Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PeerJ ; 12: e17022, 2024.
Article in English | MEDLINE | ID: mdl-38563017

ABSTRACT

Eucalyptus camaldulensis is a multifunctional tree and is globally used for the reclamation of problematic lands. Eucalyptus camaldulensis is prone to attack by a number of pathogens, but the most important threat is the Fusarium wilt (Fusarium oxysporum). Keeping in view the importance of E. camaldulensis and to manage this disease, five plant activators, i.e., salicylic acid (C7H6O3), benzoic acid (C7H6O2), citric acid (C6H8O7), dipotassium phosphate (K2HPO4), monopotassium phosphate (KH2PO4) and nutritional mixture namely Compound (NPK) and nutriotop (Fe, Zn, Cu, B, Mn) were evaluated in the Fusarium infested field under RCBD in the Research Area, Department of Forestry and Range Management, University of Agriculture, Faisalabad (UAF). Among plant activators, salicylic acid and a combination of compound + nutriotop exhibited the lowest disease incidence and enhanced fresh and dry weight of leaves compared to other treatments and control. Results of the environmental study indicated maximum disease incidence between 35-40 °C (max. T), 6-25 °C (mini. T), 70-80% relative humidity and 1.5-2.5 km/h wind speed while pan evaporation expressed weak correlation with disease development. It was concluded that Fusarium wilt of Eucalyptus camaldulensis could be managed through activation of the basal defense system of the host plant with provision of salicylic acid and balanced nutrition by considering environmental factors. Recent exploration is expected to be helpful for future research efforts on epidemiology and ecologically sound intervention of Fusarium wilt of Eucalyptus camaldulensis.


Subject(s)
Eucalyptus , Fusarium , Salicylic Acid , Plant Leaves , Phosphates
2.
Plants (Basel) ; 12(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37447029

ABSTRACT

Soil compaction has become a global problem affecting soil worldwide. With an increased population, more demands for food and wood have resulted in intensive cultivation and increased mechanization of our farmlands and irrigated plantations. The use of heavy machinery results in soil compaction, which affects the entire soil ecosystem. This study was conducted to analyze the impact of compacted soil on germination and initial growth stages of four major agro-forest trees of central Punjab, Pakistan. Morpho-physiological traits of all selected species (Eucalyptus camaldulensis, Albizia lebbeck, Vachellia nilotica, and Zyziphus mauritiana) were measured against soil compaction. Results indicated that the root and shoot length, biomass, root-shoot ratio, diameter at root collar, no. of leaves and branches, leaf area, germination, and survival %, and physiological traits (i.e., photosynthetic rate, transpiration rate, stomatal conductance, internal CO2 concentration, and photosynthetic water use efficiency) were significantly affected by the induced soil compaction. Eucalyptus camaldulensis Dehnh. performed better and exhibited 96% germination percentage under (1.40 mg m-3) compaction level and gradually decreased by 11% with the increase of compaction level (1.80 mg m-3). It shows that the shorter roots developed due to soil compaction decreased water use efficiency, photosynthesis, and whole-plant physiological performance. The findings concluded that judicious use of machinery is highly desired for sustainable and good-quality wood production from farm trees.

3.
Front Plant Sci ; 14: 1095888, 2023.
Article in English | MEDLINE | ID: mdl-36794215

ABSTRACT

Wood anatomy and plant hydraulics play a significant role in understanding species-specific responses and their ability to manage rapid environmental changes. This study used the dendro-anatomical approach to assess the anatomical characteristics and their relation to local climate variability in the boreal coniferous tree species Larix gmelinii (Dahurian larch) and Pinus sylvestris var. mongolica (Scots pine) at an altitude range of 660 m to 842 m. We measured the xylem anatomical traits (lumen area (LA), cell wall thickness (CWt), cell counts per ring (CN), ring width (RW), and cell sizes in rings) of both species at four different sites Mangui (MG), Wuerqihan (WEQH), Moredagha (MEDG) and Alihe (ALH) and investigated their relationship with temperature and precipitation of those sites along a latitude gradient. Results showed that all chronologies have strong summer temperature correlations. LA extremes were mostly associated with climatic variation than CWt and RWt. MEDG site species showed an inverse correlation in different growing seasons. The correlation coefficient with temperature indicated significant variations in the May-September months at MG, WEQH, and ALH sites. These results suggest that climatic seasonality changes in the selected sites positively affect hydraulic efficiency (increase in the diameter of the earlywood cells) and the width of the latewood produced in P. sylvestris. In contrast, L. gmelinii showed the opposite response to warm temperatures. It is concluded that xylem anatomical responses of L. gmelinii and P. sylvestris showed varied responses to different climatic factors at different sites. These differences between the two species responses to climate are due to the change of site condition on a large spatial and temporal scale.

4.
Plants (Basel) ; 11(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36145842

ABSTRACT

Abiotic stresses, such as high temperature and drought conditions, greatly influence the development of plants and the quality and quantity of products. Barley (Hordeum vulgare L.) crop production is largely impacted by drought, affecting growth, yield, and ultimately the productivity of the crop in hot arid/semi-arid conditions. The current pot experiment was directed to observe the outcome of nicotinic acid (NA) treatments on barley's physiological, biochemical, and production attributes at two capacity levels, i.e., 100% normal range and withholding water stress. Randomized complete block design (RCBD) was used during the experimentation with the two-factor factorial arrangement. NA was applied exogenously by two different methods, i.e., foliar and soil application (fertigation). NA solution contained various application levels, such as T1 = control, foliar applications (T2 = 0.7368 gL-1, T3 = 1.477 gL-1, T4 = 2.2159 gL-1), and soil applications (T5 = 0.4924 gL-1, T6 = 0.9848 gL-1, and T7 = 1.4773 gL-1). Results depicted that, overall, foliar treatments showed better effects than control and soil treatments. Plant growth was preeminent under T4 treatment, such as plant height (71.07 cm), relative water content (84.0%), leaf water potential (39.73-MPa), leaf area index (36.53 cm2), biological yield (15.10 kgha-1), grain yield (14.40 kgha-1), harvest index (57.70%), catalase (1.54 mmolg-1FW-1), peroxidase (1.90 g-1FWmin-1), and superoxide dismutase (52.60 µgFW-1) were superior under T4 treatment. Soil plant analysis development (54.13 µgcm-2) value was also higher under T4 treatment and lowest under T7 treatment. In conclusion, NA-treated plants were more successful in maintaining growth attributes than non-treated plants; therefore, the NA foliar treatment at the rate of 2.2159 gL-1 is suggested to find economical crop yield under drought conditions. The present study would contribute significantly to improving the drought tolerance potential of barley through exogenous NA supply in water deficit areas.

5.
Nanomaterials (Basel) ; 12(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35808112

ABSTRACT

Recently, quantum-dot-based core/shell structures have gained significance due to their optical, optoelectronic, and magnetic attributes. Controlling the fluorescence lifetime of QDs shells is imperative for various applications, including light-emitting diodes and single-photon sources. In this work, novel Cu-doped CdS/ZnS shell structures were developed to enhance the photoluminescence properties. The objective was to materialize the Cu-doped CdS/ZnS shells by the adaptation of a two-stage high-temperature doping technique. The developed nanostructures were examined with relevant characterization techniques such as transmission electron microscopy (TEM) and ultraviolet-visible (UV-vis) emission/absorption spectroscopy. Studying fluorescence, we witnessed a sharp emission peak at a wavelength of 440 nm and another emission peak at a wavelength of 620 nm, related to the fabricated Cu-doped CdS/ZnS core/shell QDs. Our experimental results revealed that Cu-doped ZnS shells adopted the crystal structure of CdS due to its larger bandgap. Consequently, this minimized lattice mismatch and offered better passivation to any surface defects, resulting in increased photoluminescence. Our developed core/shells are highly appropriate for the development of efficient light-emitting diodes.

6.
Environ Sci Pollut Res Int ; 29(7): 10250-10262, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34519003

ABSTRACT

Forest ecosystem carbon (C) storage primarily includes vegetation layers C storage, litter C storage, and soil C storage. The precise assessment of forest ecosystem C storage is a major concern that has drawn widespread attention in global climate change worldwide. This study explored the C storage of different layers of the forest ecosystem and the nutrient enrichment capacity of the vegetation layer to the soil in the Castanopsis eyeri natural forest ecosystem (CEF) present in the northeastern Hunan province, central China. The direct field measurements were used for the estimations. Results illustrate that trunk biomass distribution was 48.42% and 62.32% in younger and over-mature trees, respectively. The combined biomass of the understory shrub, herb, and litter layers was 10.46 t·hm-2, accounting for only 2.72% of the total forest biomass. On average, C content increased with the tree age increment. The C content of tree, shrub, and herb layers was 45.68%, 43.08%, and 35.76%, respectively. Litter C content was higher in the undecomposed litter (44.07 %). Soil C content continually decreased as the soil depth increased, and almost half of soil C was stored in the upper soil layer. Total C stored in CEF was 329.70 t·hm-2 and it follows the order: tree layer > soil layer > litter layer > shrub layer > herb layer, with C storage distribution of 51.07%, 47.80%, 0.78%, 0.25%, and 0.10%, respectively. Macronutrient enrichment capacity from vegetation layers to soil was highest in the herb layer and lowest in the tree layer, whereas no consistent patterns were observed for trace elements. This study will help understand the production mechanism and ecological process of the C. eyeri natural forest ecosystem and provide the basics for future research on climate mitigation, nutrient cycling, and energy exchange in developing and utilizing sub-tropical vegetation.


Subject(s)
Ecosystem , Trees , Biomass , Carbon/analysis , Carbon Sequestration , China , Forests , Nutrients , Soil
7.
Micromachines (Basel) ; 12(12)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34945347

ABSTRACT

In the last decade, silicon carbide (SiC) has emerged as a potential material for high-frequency electronics and optoelectronics applications that may require elevated temperature processing. SiC exists in more than 200 different crystallographic forms, referred to as polytypes. Based on their remarkable physical and electrical characteristics, such as better thermal and electrical conductivities, 3C-SiC, 4H-SiC, and 6H-SiC are considered as the most distinguished polytypes of SiC. In this article, physical device simulation of a light-emitting diode (LED) based on the unique structural configuration of 4H-SiC and 6H-SiC layers has been performed which corresponds to a novel material joining technique, called diffusion welding/bonding. The proposed single quantum well (SQW) edge-emitting SiC-based LED has been simulated using a commercially available semiconductor device simulator, SILVACO TCAD. Moreover, by varying different design parameters, the current-voltage characteristics, luminous power, and power spectral density have been calculated. Our proposed LED device exhibited promising results in terms of luminous power efficiency and external quantum efficiency (EQE). The device numerically achieved a luminous efficiency of 25% and EQE of 16.43%, which is at par performance for a SQW LED. The resultant LED structure can be customized by choosing appropriate materials of varying bandgaps to extract the light emission spectrum in the desired wavelength range. It is anticipated that the physical fabrication of our proposed LED by direct bonding of SiC-SiC wafers will pave the way for the future development of efficient and cost-effective SiC-based LEDs.

8.
Plants (Basel) ; 10(8)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34451544

ABSTRACT

Natural isotopic abundance in soil and foliar can provide integrated information related to the long-term alterations of carbon (C) and nitrogen (N) cycles in forest ecosystems. We evaluated total carbon (TC), total nitrogen (TN), and isotopic natural abundance of C (δ13C) and N (δ15N) in soil and foliar of coniferous plantation (CPF), natural broadleaved forest (NBF), and mixed forest stands at three different soil depths (i.e., 0-10, 10-20, and 20-40 cm). This study also explored how soil available nutrients are affected by different forest types. Lutou forest research station, located in Hunan Province, central China, was used as the study area. Results demonstrated that the topsoil layer had higher TC and TN content in the mixed forest stand, resulting in a better quality of organic materials in the topsoil layer in the mixed forest than NBF and CPF. In general, soil TC, TN, and δ15N varied significantly in different soil depths and forest types. However, the forest type did not exhibit any significant effect on δ13C. Overall, soil δ13C was significantly enriched in CPF, and δ15N values were enriched in mixed forest. Foliar C content varied significantly among forest types, whereas foliar N content was not significantly different. No big differences were observed for foliar δ15N and δ13C across forest types. However, foliar δ13C and δ15N were positively related to soil δ13C and δ15N, respectively. Foliar N, soil and foliar C:N ratio, soil moisture content (SMC), and forest type were observed as the major influential factors affecting isotopic natural abundance, whereas soil pH was not significantly correlated. In addition, forest type change and soil depth increment had a significant effect on soil nutrient availability. In general, soil nutrient availability was higher in mixed forest. Our findings implied that forest type and soil depth alter TC, TN, and soil δ15N, whereas δ13C was only driven by soil depth. Moreover, plantations led to a decline in soil available nutrient content compared with NBF and mixed forest stands.

9.
Plants (Basel) ; 10(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925476

ABSTRACT

Intercropping is one of the most widely used agroforestry techniques, reducing the harmful impacts of external inputs such as fertilizers. It also controls soil erosion, increases soil nutrients availability, and reduces weed growth. In this study, the intercropping of peanut (Arachishypogaea L.) was done with tea plants (Camellia oleifera), and it was compared with the mono-cropping of tea and peanut. Soil health and fertility were examined by analyzing the variability in soil enzymatic activity and soil nutrients availability at different soil depths (0-10 cm, 10-20 cm, 20-30 cm, and 30-40 cm). Results showed that the peanut-tea intercropping considerably impacted the soil organic carbon (SOC), soil nutrient availability, and soil enzymatic responses at different soil depths. The activity of protease, sucrase, and acid phosphatase was higher in intercropping, while the activity of urease and catalase was higher in peanut monoculture. In intercropping, total phosphorus (TP) was 14.2%, 34.2%, 77.7%, 61.9%; total potassium (TK) was 13.4%, 20%, 27.4%, 20%; available phosphorus (AP) was 52.9%, 26.56%, 61.1%; 146.15% and available potassium (AK) was 11.1%, 43.06%, 46.79% higher than the mono-cropping of tea in respective soil layers. Additionally, available nitrogen (AN) was 51.78%, 5.92%, and 15.32% lower in the 10-20 cm, 20-30 cm, and 30-40 cm layers of the intercropping system than in the mono-cropping system of peanut. Moreover, the soil enzymatic activity was significantly correlated with SOC and total nitrogen (TN) content across all soil depths and cropping systems. The depth and path analysis effect revealed that SOC directly affected sucrase, protease, urease, and catalase enzymes in an intercropping system. It was concluded that an increase in the soil enzymatic activity in the intercropping pattern improved the reaction rate at which organic matter decomposed and released nutrients into the soil environment. Enzyme activity in the decomposition process plays a vital role in forest soil morphology and function. For efficient land use in the cropping system, it is necessary to develop coherent agroforestry practices. The results in this study revealed that intercropping certainly enhance soil nutrients status and positively impacts soil conservation.

10.
Environ Sustain (Singap) ; 4(3): 579-584, 2021.
Article in English | MEDLINE | ID: mdl-38624610

ABSTRACT

Coronavirus disease (COVID-19) has emerged as a major global challenge since 2019. With the fast rise in the infected cases and deaths worldwide, many environmental and climate-related myths and fallacies spreaded fast. These fallacies include virus cannot spread in hot and humid conditions, cold weather can inhibit the virus, drinking hot water and sunlight can help cure the COVID-19, ultraviolet (UV) disinfectant lamps and UV rays from sunlight can kill the virus, use of hairdryers and hot showers for virus prevention, etc. Social norms and mindset of the people in the world towards a pandemic are quite similar. The primary purpose of this article is to enlighten the readers regarding these climatological misconceptions and social fallacies, helping spread proper knowledge and manage the outbreak of this deadly pandemic.

11.
Micromachines (Basel) ; 11(5)2020 Apr 26.
Article in English | MEDLINE | ID: mdl-32357454

ABSTRACT

Carbon nanotubes (CNTs)-based sensors have gained significant importance due to their tremendous electrical and physical attributes. CNT-based gas sensors have high sensitivity, stability, and fast response time compared to that of solid-state sensors. On exposure to a large variety of organic and inorganic compounds, the conductivity of CNT changes. This change in electrical conductivity is being used as a detection signal to detect different target molecules. Hydrogen-sulfide and benzene are hazardous gases that can cause serious health issues in humans. Therefore, it is mandatory to detect their presence in industrial and household environments. In this article, we simulated CNT-based benzene and hydrogen-sulfide sensor with a nanoscale semiconductor device simulator-Quantumwise Atomistix Toolkit (ATK). The change in the device density of states, electric current, and photocurrent in the presence of target molecules have been calculated. The change in photocurrent in the presence of target molecules has been proposed as a novel detection mechanism to improve the sensor selectivity and accuracy. This change in photocurrent as well as electric current in the presence of target molecules can be used simultaneously as detection signals. Our intension in the future is to physically fabricate this simulated device and use photocurrent as well as electric current as detection mechanisms.

12.
Nanomaterials (Basel) ; 10(1)2020 Jan 03.
Article in English | MEDLINE | ID: mdl-31947803

ABSTRACT

During the last few years graphene has emerged as a potential candidate for electronics and optoelectronics applications due to its several salient features. Graphene is a smart material that responds to any physical change in its surrounding environment. Graphene has a very low intrinsic electronic noise and it can detect even a single gas molecule in its proximity. This property of graphene makes is a suitable and promising candidate to detect a large variety of organic/inorganic chemicals and gases. Typical solid state gas sensors usually requires high operating temperature and they cannot detect very low concentrations of gases efficiently due to intrinsic noise caused by thermal motion of charge carriers at high temperatures. They also have low resolution and stability issues of their constituent materials (such as electrolytes, electrodes, and sensing material itself) in harsh environments. It accelerates the need of development of robust, highly sensitive and efficient gas sensor with low operating temperature. Graphene and its derivatives could be a prospective replacement of these solid-state sensors due to their better electronic attributes for moderate temperature applications. The presence of extremely low intrinsic noise in graphene makes it highly suitable to detect a very low concentration of organic/inorganic compounds (even a single molecule ca be detected with graphene). In this article, we simulated a novel graphene nanoribbon based field effect transistor (FET) and used it to detect propane and butane gases. These are flammable household/industrial gases that must be detected to avoid serious accidents. The effects of atmospheric oxygen and humidity have also been studied by mixing oxygen and water molecules with desired target gases (propane and butane). The change in source-to-drain current of FET in the proximity of the target gases has been used as a detection signal. Our simulated FET device showed a noticeable change in density of states and IV-characteristics in the presence of target gas molecules. Nanoscale simulations of FET based gas sensor have been done in Quantumwise Atomistix Toolkit (ATK). ATK is a commercially available nanoscale semiconductor device simulator that is used to model a large variety of nanoscale devices. Our proposed device can be converted into a physical device to get a low cost and small sized integrated gas sensor.

SELECTION OF CITATIONS
SEARCH DETAIL
...