Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34501032

ABSTRACT

Generally, waste heat is redundantly released into the surrounding by anthropogenic activities without strategized planning. Consequently, urban heat islands and global warming chronically increases over time. Thermophotovoltaic (TPV) systems can be potentially deployed to harvest waste heat and recuperate energy to tackle this global issue with supplementary generation of electrical energy. This paper presents a critical review on two dominant types of semiconductor materials, namely gallium antimonide (GaSb) and indium gallium arsenide (InGaAs), as the potential candidates for TPV cells. The advantages and drawbacks of non-epitaxy and epitaxy growth methods are well-discussed based on different semiconductor materials. In addition, this paper critically examines and summarizes the electrical cell performance of TPV cells made of GaSb, InGaAs and other narrow bandgap semiconductor materials. The cell conversion efficiency improvement in terms of structural design and architectural optimization are also comprehensively analyzed and discussed. Lastly, the practical applications, current issues and challenges of TPV cells are critically reviewed and concluded with recommendations for future research. The highlighted insights of this review will contribute to the increase in effort towards development of future TPV systems with improved cell conversion efficiency.

2.
Sci Rep ; 11(1): 7741, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33833263

ABSTRACT

The optimization of thermophotovoltaic (TPV) cell efficiency is essential since it leads to a significant increase in the output power. Typically, the optimization of In0.53Ga0.47As TPV cell has been limited to single variable such as the emitter thickness, while the effects of the variation in other design variables are assumed to be negligible. The reported efficiencies of In0.53Ga0.47As TPV cell mostly remain < 15%. Therefore, this work develops a multi-variable or multi-dimensional optimization of In0.53Ga0.47As TPV cell using the real coded genetic algorithm (RCGA) at various radiation temperatures. RCGA was developed using Visual Basic and it was hybridized with Silvaco TCAD for the electrical characteristics simulation. Under radiation temperatures from 800 to 2000 K, the optimized In0.53Ga0.47As TPV cell efficiency increases by an average percentage of 11.86% (from 8.5 to 20.35%) as compared to the non-optimized structure. It was found that the incorporation of a thicker base layer with the back-barrier layers enhances the separation of charge carriers and increases the collection of photo-generated carriers near the band-edge, producing an optimum output power of 0.55 W/cm2 (cell efficiency of 22.06%, without antireflection coating) at 1400 K radiation spectrum. The results of this work demonstrate the great potential to generate electricity sustainably from industrial waste heat and the multi-dimensional optimization methodology can be adopted to optimize semiconductor devices, such as solar cell, TPV cell and photodetectors.

SELECTION OF CITATIONS
SEARCH DETAIL
...