Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975622

ABSTRACT

High oxidation state metal cations in the form of oxides, oxoanions, or oxoperoxoanions have diverse roles in carbon dioxide removal (direct air capture and point source). Features include providing basic oxygens for chemisorption reactions, direct binding of carbonate, and catalyzing low-temperature CO2 release to regenerate capture media. Moreover, metal oxides and aqueous metal-oxo species are stable in harsh, point-source conditions. Here, we demonstrate aqueous niobium polyoxometalate (POM) carbon capture ability, specifically [Nb6O19]8-, Nb6. Upon exposure of aqueous Nb6 to CO2, Nb6 fragments and binds chemisorbed carbonate, evidenced by crystallization of Nb-carbonate POMs including [Nb22O53(CO3)16]28-and [Nb10O25(CO3)6]12-. While Rb/Cs+ counter cations yield crystal structures to understand the chemisorption processes, K+ counter cations enable higher capture efficiency (based on CO3/Nb ratio), determined by CHN analysis and thermogravimetry-mass spectrometry of the isolated solids. Sum frequency generation spectroscopy also showed higher carbon capture efficiency of the K-Nb6 solutions at the air-water interface, while small-angle X-ray scattering (SAXS) provided insights into the role of the alkalis in influencing these processes. Tetramethylammonium counter cations, like K+, demonstrate high efficiency of carbonate chemisorption at the interface, but SAXS and Raman of the bulk showed a predominance of a Nb24-POM (HxNb24O72, x ∼ 9) that does not bind carbonate. Control experiments show that carbonate detected at the interface is Nb-bound, and the Nb-carbonate species are stabilized by alkalis, demonstrating their supporting role in aqueous Nb-POM CO2 chemisorption. Of fundamental importance, this study presents rare examples of directing POM speciation with a gas, instead of liquid phase acid or base.

2.
Langmuir ; 38(51): 15984-15994, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36519947

ABSTRACT

Treating the oil sands tailings ponds is a major challenge because of the vast amounts of tailings and the need for a reliable treatment technique for releasing water and generating the highly consolidated material required for land reclamation. Treatment with chemicals such as lime (calcium (hydr)oxide) is a promising technology for tailings dewatering and consolidation, particularly at higher pH. Given that kaolinite and silica minerals are the main constituents of many oil sands, we have investigated the influence of lime and NaOH addition on the silica/aqueous kaolinite interface over the pH range 7.4-12.4 using vibrational sum frequency generation spectroscopy (SFG). With lime addition, at pH 12.0 and above we observe a complete disappearance of the vibrational features of the interfacial water molecules for planar silica in contact with an aqueous dispersion of kaolinite particles. A concurrent increase in the amount of adsorbed kaolinite on the silica surface at pH 12.0 and above is observed, shown in the increased intensity of the kaolinite SFG peak at 3694 cm-1. This suggests that the absence of water features in the SFG spectra is associated with conditions that facilitate dewatering. With NaOH addition, however, the interfacial water SF intensity is still significant even under highly alkaline conditions despite the increase in adsorbed kaolinite at high pH. To better understand the SFG observations and get a deeper insight into the chemistry of the silica/aqueous kaolinite interface, we measure the ζ-potential on the planar silica/aqueous interface and kaolinite aqueous dispersions under the same pH conditions with NaOH and lime addition.

SELECTION OF CITATIONS
SEARCH DETAIL
...