Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Biol Trace Elem Res ; 201(2): 592-602, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35258774

ABSTRACT

The human neocortex has a cytoarchitecture composed of six layers with an intrinsic organization that relates to afferent and efferent pathways for a high functional specialization. Various histological, neurochemical, and connectional techniques have been used to study these cortical layers. Here, we explore the additional possibilities of swift ion beam and synchrotron radiation techniques to distinguish cellular layers based on the elemental distributions and areal density pattern in the human neocortex. Temporal cortex samples were obtained from two neurologically normal adult men (postmortem interval: 6-12 h). A cortical area of 500 × 500 µm2 was scanned by a 3 MeV proton beam for elemental composition and areal density measurements using particle induced x-ray emission (PIXE) and scanning transmission ion microscopy (STIM), respectively. Zinc showed higher values in cortical layers II and V, which needs a critical discussion. Furthermore, the areal density decreased in regions with a higher density of pyramidal neurons in layers III and V. Scanning transmission X-ray microscopy (STXM) revealed the cellular density with higher lateral resolution than STIM, but not enough to distinguish each cortical lamination border. Our data describe the practical results of these approaches employing both X-ray and ion-beam based techniques for the human cerebral cortex and its heterogeneous layers. These results add to the potential approaches and knowledge of the human neocortical gray matter in normal tissue to develop improvements and address further studies on pathological conditions.


Subject(s)
Neocortex , Male , Adult , Humans , Microscopy , X-Rays , Magnetic Resonance Imaging , Cell Count
2.
Clin Sci (Lond) ; 134(15): 1991-2017, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32749472

ABSTRACT

The major risk factors to fatal outcome in COVID-19 patients, i.e., elderliness and pre-existing metabolic and cardiovascular diseases (CVD), share in common the characteristic of being chronic degenerative diseases of inflammatory nature associated with defective heat shock response (HSR). The molecular components of the HSR, the principal metabolic pathway leading to the physiological resolution of inflammation, is an anti-inflammatory biochemical pathway that involves molecular chaperones of the heat shock protein (HSP) family during homeostasis-threatening stressful situations (e.g., thermal, oxidative and metabolic stresses). The entry of SARS coronaviruses in target cells, on the other hand, aggravates the already-jeopardized HSR of this specific group of patients. In addition, cellular counterattack against virus involves interferon (IFN)-mediated inflammatory responses. Therefore, individuals with impaired HSR cannot resolve virus-induced inflammatory burst physiologically, being susceptible to exacerbated forms of inflammation, which leads to a fatal "cytokine storm". Interestingly, some species of bats that are natural reservoirs of zoonotic viruses, including SARS-CoV-2, possess an IFN-based antiviral inflammatory response perpetually activated but do not show any sign of disease or cytokine storm. This is possible because bats present a constitutive HSR that is by far (hundreds of times) more intense and rapid than that of human, being associated with a high core temperature. Similarly in humans, fever is a physiological inducer of HSR while antipyretics, which block the initial phase of inflammation, impair the resolution phase of inflammation through the HSR. These findings offer a rationale for the reevaluation of patient care and fever reduction in SARS, including COVID-19.


Subject(s)
Betacoronavirus/physiology , Chiroptera/immunology , Coronavirus Infections/immunology , Heat-Shock Response , Pneumonia, Viral/immunology , Animals , Betacoronavirus/genetics , COVID-19 , Chiroptera/virology , Coronavirus Infections/drug therapy , Coronavirus Infections/genetics , Coronavirus Infections/physiopathology , Heat-Shock Proteins/genetics , Heat-Shock Proteins/immunology , Humans , Interferons/immunology , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/genetics , Pneumonia, Viral/physiopathology , SARS-CoV-2
3.
Front Immunol ; 11: 577875, 2020.
Article in English | MEDLINE | ID: mdl-33519802

ABSTRACT

Human infection by the SARS-CoV-2 is causing the current COVID-19 pandemic. With the growing numbers of cases and deaths, there is an urgent need to explore pathophysiological hypotheses in an attempt to better understand the factors determining the course of the disease. Here, we hypothesize that COVID-19 severity and its symptoms could be related to transmembrane and soluble Angiotensin-converting enzyme 2 (tACE2 and sACE2); Angiotensin II (ANG II); Angiotensin 1-7 (ANG 1-7) and angiotensin receptor 1 (AT1R) activation levels. Additionally, we hypothesize that an early peak in ANG II and ADAM-17 might represent a physiological attempt to reduce viral infection via tACE2. This viewpoint presents: (1) a brief introduction regarding the renin-angiotensin-aldosterone system (RAAS), detailing its receptors, molecular synthesis, and degradation routes; (2) a description of the proposed early changes in the RAAS in response to SARS-CoV-2 infection, including biological scenarios for the best and worst prognoses; and (3) the physiological pathways and reasoning for changes in the RAAS following SARS-CoV-2 infection.


Subject(s)
Angiotensin II/metabolism , COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions , SARS-CoV-2/physiology , COVID-19/immunology , Host-Pathogen Interactions/immunology , Humans , Immunity , Renin-Angiotensin System
4.
Metab Brain Dis ; 28(3): 509-17, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23430365

ABSTRACT

Phenylketonuria (PKU) is the most frequent aminoacidopathy that damage the central nervous system and is characterized by neural injury, mental retardation and accumulation of phenylalanine and its metabolites in plasma and tissues. So far, the only effective protection against brain injury is the administration of special phenylalanine-free diets. Animals with lesions in the hippocampus and amygdala had behavioral impairments indicating the importance of the integrity of these brain structures in learning and memory tasks which are disability characteristics of patients affected by PKU. In the present study we aimed to test the effect of the combination of two energetic and antioxidant compounds-pyruvate and creatine (intraperitoneal injections of 0.2 mg/g of body weight and 0.4 mg/g of body weight, respectively, treatment from the 7th to the 28th postnatal day)-in animals subjected to a chronic model of PKU. To assess likely effects, the density of dendritic spines in the hippocampal CA1 region and in the posterodorsal medial amygdala of 60-day-old male rats were analyzed under confocal microscopy. Present results showed that the co-treatment with pyruvate and creatine prevented the reduction in dendritic spine density in the stratum radiatum of the CA1 hippocampal field and in the posterodorsal medial amygdala of PKU animals. If this can also occur in PKU patients, it is possible that creatine and pyruvate may help to prevent brain damage in patients under specific diet.


Subject(s)
Amygdala/cytology , Creatine/pharmacology , Dendritic Spines/drug effects , Hippocampus/cytology , Phenylketonurias/pathology , Pyruvic Acid/pharmacology , Amygdala/drug effects , Amygdala/pathology , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/pathology , Cell Count , Coloring Agents , Hippocampus/drug effects , Hippocampus/pathology , Image Processing, Computer-Assisted , Immunohistochemistry , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar
5.
Cienc. cogn ; 13(2): 27-50, jul. 31, 2008. ilus, tab, graf
Article in Portuguese | Index Psychology - journals | ID: psi-58947

ABSTRACT

Este artigo apresenta uma revisão sobre questões cognitivas – de processamento de informações - envolvidas na aprendizagem motora, para consolidar pesquisa empírica a esse respeito. Propõe metodologia de observação e quantificação de sinais bioelétricos neurofisiológicos – de EEG – para identificação das modificações que ocorrem durante o processo de aquisição de tarefa cognitivo-motora. Descreve experimento-piloto em projeto de tese de doutorado na área das Ciências do Movimento, que monitora, quantifica e interpreta a alteração de sinais de base em relação a vários momentos da tarefa: prática deliberada de partitura musical por violonistas.


Subject(s)
Motor Activity , Cognition , Teaching
SELECTION OF CITATIONS
SEARCH DETAIL
...