Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 132(11)2022 06 01.
Article in English | MEDLINE | ID: mdl-35642638

ABSTRACT

Poly(ADP-ribose) polymerase inhibitors (PARP inhibitors) have had an increasing role in the treatment of ovarian and breast cancers. PARP inhibitors are selectively active in cells with homologous recombination DNA repair deficiency caused by mutations in BRCA1/2 and other DNA repair pathway genes. Cancers with homologous recombination DNA repair proficiency respond poorly to PARP inhibitors. Cancers that initially respond to PARP inhibitors eventually develop drug resistance. We have identified salt-inducible kinase 2 (SIK2) inhibitors, ARN3236 and ARN3261, which decreased DNA double-strand break (DSB) repair functions and produced synthetic lethality with multiple PARP inhibitors in both homologous recombination DNA repair deficiency and proficiency cancer cells. SIK2 is required for centrosome splitting and PI3K activation and regulates cancer cell proliferation, metastasis, and sensitivity to chemotherapy. Here, we showed that SIK2 inhibitors sensitized ovarian and triple-negative breast cancer (TNBC) cells and xenografts to PARP inhibitors. SIK2 inhibitors decreased PARP enzyme activity and phosphorylation of class-IIa histone deacetylases (HDAC4/5/7). Furthermore, SIK2 inhibitors abolished class-IIa HDAC4/5/7-associated transcriptional activity of myocyte enhancer factor-2D (MEF2D), decreasing MEF2D binding to regulatory regions with high chromatin accessibility in FANCD2, EXO1, and XRCC4 genes, resulting in repression of their functions in the DNA DSB repair pathway. The combination of PARP inhibitors and SIK2 inhibitors provides a therapeutic strategy to enhance PARP inhibitor sensitivity for ovarian cancer and TNBC.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Triple Negative Breast Neoplasms , Antineoplastic Agents/therapeutic use , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Recombinational DNA Repair , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics
2.
Cancers (Basel) ; 13(3)2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33503955

ABSTRACT

Salt-induced kinase 2 (SIK2) is a serine-threonine kinase that regulates centrosome splitting, activation of PI3 kinase and phosphorylation of class IIa HDACs, affecting gene expression. Previously, we found that inhibition of SIK2 enhanced sensitivity of ovarian cancer cells to paclitaxel. Carboplatin and paclitaxel constitute first-line therapy for most patients with ovarian carcinoma, producing a 70% clinical response rate, but curing <20% of patients with advanced disease. We have asked whether inhibition of SIK2 with ARN-3261 enhances sensitivity to carboplatin in ovarian cancer cell lines and xenograft models. ARN-3261-induced DNA damage and apoptosis were measured with γ-H2AX accumulation, comet assays, and annexin V. ARN-3261 inhibited growth of eight ovarian cancer cell lines at an IC50 of 0.8 to 3.5 µM. ARN-3261 significantly enhanced sensitivity to carboplatin in seven of eight ovarian cancer cell lines and a carboplatin-resistant cell line tested. Furthermore, ARN-3261 in combination with carboplatin produced greater inhibition of tumor growth than carboplatin alone in SKOv3 and OVCAR8 ovarian cancer xenograft models. ARN-3261 enhanced DNA damage and apoptosis by downregulating expression of survivin. Thus, a SIK2 kinase inhibitor enhanced carboplatin-induced therapy in preclinical models of ovarian cancer and deserves further evaluation in clinical trials.

3.
Cancers (Basel) ; 11(4)2019 Apr 18.
Article in English | MEDLINE | ID: mdl-31003488

ABSTRACT

Autophagy can protect cancer cells from acute starvation and enhance resistance to chemotherapy. Previously, we reported that autophagy plays a critical role in the survival of dormant, drug resistant ovarian cancer cells using human xenograft models and correlated the up-regulation of autophagy and DIRAS3 expression in clinical samples obtained during "second look" operations. DIRAS3 is an imprinted tumor suppressor gene that encodes a 26 kD GTPase with homology to RAS that inhibits cancer cell proliferation and motility. Re-expression of DIRAS3 in ovarian cancer xenografts also induces dormancy and autophagy. DIRAS3 can bind to Beclin1 forming the Autophagy Initiation Complex that triggers autophagosome formation. Both the N-terminus of DIRAS3 (residues 15-33) and the switch II region of DIRAS3 (residues 93-107) interact directly with BECN1. We have identified an autophagy-inhibiting peptide based on the switch II region of DIRAS3 linked to Tat peptide that is taken up by ovarian cancer cells, binds Beclin1 and inhibits starvation-induced DIRAS3-mediated autophagy.

SELECTION OF CITATIONS
SEARCH DETAIL
...