Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 1729, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38242919

ABSTRACT

Anoxia halts oxidative phosphorylation (OXPHOS) causing an accumulation of reduced compounds in the mitochondrial matrix which impedes dehydrogenases. By simultaneously measuring oxygen concentration, NADH autofluorescence, mitochondrial membrane potential and ubiquinone reduction extent in isolated mitochondria in real-time, we demonstrate that Complex I utilized endogenous quinones to oxidize NADH under acute anoxia. 13C metabolic tracing or untargeted analysis of metabolites extracted during anoxia in the presence or absence of site-specific inhibitors of the electron transfer system showed that NAD+ regenerated by Complex I is reduced by the 2-oxoglutarate dehydrogenase Complex yielding succinyl-CoA supporting mitochondrial substrate-level phosphorylation (mtSLP), releasing succinate. Complex II operated amphidirectionally during the anoxic event, providing quinones to Complex I and reducing fumarate to succinate. Our results highlight the importance of quinone provision to Complex I oxidizing NADH maintaining glutamate catabolism and mtSLP in the absence of OXPHOS.


Subject(s)
Mitochondria , NAD , Humans , NAD/metabolism , Mitochondria/metabolism , Electron Transport Complex I/metabolism , Quinones/metabolism , Oxidative Phosphorylation , Succinates/metabolism , Hypoxia/metabolism , Oxidation-Reduction
2.
J Thromb Haemost ; 22(3): 794-804, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38016517

ABSTRACT

BACKGROUND: Postpartum hemorrhage (PPH) is the leading cause of maternal death worldwide. The World Maternal Antifibrinolytic trial showed that antifibrinolytic tranexamic acid (TXA) reduces PPH deaths. Maternal anemia increases the risk of PPH. The World Maternal Antifibrinolytic-2 trial is now assessing whether TXA can prevent PPH in women with anemia. Low red blood cell (RBC) counts promote fibrinolysis by altering fibrin structure and plasminogen activation. OBJECTIVES: We explored interactions between RBCs and TXA in inhibiting fibrinolysis. METHODS: We used global fibrinolytic assays (ball sedimentation and viscoelasticity) to monitor the lysis of fibrin containing plasminogen and tissue-type plasminogen activator. We applied a fluorogenic kinetic assay to measure plasmin generation in fibrin clots and scanning electron microscopy to study fibrin structure. RESULTS: According to parallel-line bioassay analysis of the fibrin lysis-time data, the antifibrinolytic potency of 4-128 µM TXA was increased in the presence of 10% to 40% (v/v) RBCs. Global fibrinolysis assays showed that the joint effect of RBCs and TXA was about 15% larger than the sum of their individual effects in the inhibition of fibrinolysis. In plasminogen activation, TXA added the same increment of inhibition to the effect of RBCs at any cell count in the fibrin clot. Regarding fibrin structure, TXA thickened fibrin fibers, which impaired plasminogen activation, whereas RBCs promoted fine fibers that were more resistant to plasmin. CONCLUSIONS: The antifibrinolytic potency of TXA is enhanced in fibrin formed in the presence of RBCs through inhibition of plasminogen activation and fibrin lysis, which correlates with modifications of fibrin structures.


Subject(s)
Anemia , Antifibrinolytic Agents , Postpartum Hemorrhage , Thrombosis , Tranexamic Acid , Pregnancy , Female , Humans , Fibrinolysis , Tranexamic Acid/pharmacology , Antifibrinolytic Agents/pharmacology , Fibrinolysin/pharmacology , Tissue Plasminogen Activator/pharmacology , Plasminogen , Fibrin , Erythrocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...