Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Evolution ; 69(10): 2689-704, 2015 10.
Article in English | MEDLINE | ID: mdl-26377138

ABSTRACT

Differences in tolerance to water stress may underlie ecological divergence of closely related ploidy lineages. However, the mechanistic basis of physiological variation governing ecogeographical cytotype segregation is not well understood. Here, using Brachypodium distachyon and its derived allotetraploid B. hybridum as model, we test the hypothesis that, for heteroploid annuals, ecological divergence of polyploids in drier environments is based on trait differentiation enabling drought escape. We demonstrate that under water limitation allotetraploids maintain higher photosynthesis and stomatal conductance and show earlier flowering than diploids, concordant with a drought-escape strategy to cope with water stress. Increased heterozygosity and greater genetic variability and plasticity of polyploids could confer a superior adaptive capability. Consistent with these predictions, we document (1) greater standing within-population genetic variation in water-use efficiency (WUE) and flowering time in allotetraploids, and (2) the existence of (nonlinear) environmental clines in physiology across allotetraploid populations. Increased gas exchange and diminished WUE occurred at the driest end of the gradient, consistent with a drought-escape strategy. Finally, we found that allotetraploids showed weaker genetic correlations than diploids congruous with the expectation of relaxed pleiotropic constraints in polyploids. Our results suggest evolutionary divergence of ecophysiological traits in each ploidy lineage.


Subject(s)
Brachypodium/genetics , Brachypodium/physiology , Ecotype , Genetic Variation , Polyploidy , Carbon Dioxide/metabolism , Droughts , Ecosystem , Flowers/genetics , Flowers/physiology , Phenotype , Photosynthesis/genetics , Water/physiology
2.
New Phytol ; 193(3): 797-805, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22150799

ABSTRACT

• The ecological and adaptive significance of plant polyploidization is not well understood and no clear pattern of association between polyploid frequency and environment has emerged. Climatic factors are expected to predict cytotype distribution. However, the relationship among climate, cytotype distribution and variation of abiotic stress tolerance traits has rarely been examined. • Here, we use flow cytometry and root-tip squashes to examine the cytotype distribution in the temperate annual grass Brachypodium distachyon in 57 natural populations distributed across an aridity gradient in the Iberian Peninsula. We further investigate the link between environmental aridity, ploidy, and variation of drought tolerance and drought avoidance (flowering time) traits. • Distribution of diploids (2n = 10) and allotetraploids (2n = 30) in this species is geographically structured throughout its range in the Iberian Peninsula, and is associated with aridity gradients. Importantly, after controlling for geographic and altitudinal effects, the link between aridity and polyploidization occurrence persisted. Water-use efficiency varied between ploidy levels, with tetraploids being more efficient in the use of water than diploids under water-restricted growing conditions. • Our results indicate that aridity is an important predictor of polyploid occurrence in B. distachyon, suggesting a possible adaptive origin of the cytotype segregation.


Subject(s)
Brachypodium/cytology , Brachypodium/genetics , Chromosome Segregation/genetics , Droughts , Ecotype , Environment , Polyploidy , Carbon Isotopes , Flowers/physiology , Geography , Logistic Models , Rain , Spain , Time Factors , Water/physiology
3.
Integr Comp Biol ; 51(5): 666-75, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21937668

ABSTRACT

Although climates are rapidly changing on a global scale, these changes cannot easily be extrapolated to the local scales experienced by organisms. In fact, such generalizations might be quite problematic. For instance, models used to predict shifts in the ranges of species during climate change rarely incorporate data resolved to <1 km(2), although most organisms integrate climatic drivers at much smaller scales. Empirical studies alone suggest that the operative temperatures of many organisms vary by as much as 10-20 °C on a local scale, depending on vegetation, geology, and topography. Furthermore, this variation in abiotic factors ignores thermoregulatory behaviors that many animals use to balance heat loads. Through a set of simulations, we demonstrate how variability in elevational topography can attenuate the effects of warming climates. These simulations suggest that changing climates do not always impact organisms negatively. Importantly, these simulations involve well-known relationships in biophysical ecology that show how no two organisms experience the same climate in the same way. We suggest that, when coupled with thermoregulatory behavior, variation in topographic features can mask the acute effect of climate change in many cases.


Subject(s)
Body Temperature Regulation , Climate Change , Lizards/physiology , Acclimatization , Altitude , Animals , Computer Simulation , Microclimate , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...