Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 15(3): e0009205, 2021 03.
Article in English | MEDLINE | ID: mdl-33755661

ABSTRACT

BACKGROUND: In Malaysia, dengue remains a top priority disease and usage of insecticides is the main method for dengue vector control. Limited baseline insecticide resistance data in dengue hotspots has prompted us to conduct this study. The present study reports the use of a map on the insecticide susceptibility status of Aedes aegypti and Aedes albopictus to provide a quick visualization and overview of the distribution of insecticide resistance. METHOD AND RESULTS: The insecticide resistance status of Aedes populations collected from 24 dengue hotspot areas from the period of December 2018 until June 2019 was proactively monitored using the World Health Organization standard protocol for adult and larval susceptibility testing was conducted, together with elucidation of the mechanisms involved in observed resistance. For resistance monitoring, susceptibility to three adulticides (permethrin, deltamethrin, and malathion) was tested, as well as susceptibility to the larvicide, temephos. Data showed significant resistance to both deltamethrin and permethrin (pyrethroid insecticides), and to malathion (organophosphate insecticide) in all sampled Aedes aegypti populations, while variable resistance patterns were found in the sampled Aedes albopictus populations. Temephos resistance was observed when larvae were tested using the diagnostic dosage of 0.012mg/L but not at the operational dosage of 1mg/L for both species. CONCLUSION: The present study highlights evidence of a potential threat to the effectiveness of insecticides currently used in dengue vector control, and the urgent requirement for insecticide resistance management to be integrated into the National Dengue Control Program.


Subject(s)
Aedes/drug effects , Dengue/transmission , Insecticide Resistance , Insecticides/pharmacology , Mosquito Vectors/drug effects , Animals , Dengue/epidemiology , Dengue/prevention & control , Female , Larva/drug effects , Malaysia/epidemiology
2.
Am J Trop Med Hyg ; 102(5): 964-970, 2020 05.
Article in English | MEDLINE | ID: mdl-32228777

ABSTRACT

Two confirmed human cases of Zika virus (ZIKV) were reported in the district of Miri, Sarawak, in 2016. Following that, a mosquito-based ZIKV surveillance study was conducted within 200-m radius from the case houses. Mosquito surveillance was conducted using five different methods, that is, biogents sentinel mosquito (BG) sentinel trap, modified sticky ovitrap, resting catch, larval surveillance, and conventional ovitrap. A total of 527 and 390 mosquito samples were obtained from the case houses in two localities, namely, Kampung Lopeng and Taman Shang Ri La, Miri, Sarawak, respectively. All mosquitoes collected were identified, which consisted of 11 species. Aedes albopictus, both the adult and larval stages, was the dominant species. Resting catch method obtained the highest number of adult mosquitoes (67%), whereas ovitrap showed the highest catch for larval mosquitoes (84%). Zika virus was detected in both adults and larvae of Ae. albopictus together with adults of Culex gelidus, and Culex quinquefasciatus using the real-time reverse transcriptase polymerase chain reaction (PCR) technique. It was noteworthy that Ae. albopictus positive with ZIKV were caught and obtained from four types of collection method. By contrast, Cx. gelidus and Culex quinquefasciatus adults collected from sticky ovitraps were also found positive with ZIKV. This study reveals vital information regarding the potential vectors of ZIKV and the possibility of transovarian transmission of the virus in Malaysia. These findings will be essentials for vector control program managers to devise preparedness and contingency plans of prevention and control of the arboviral disease.


Subject(s)
Culicidae/virology , Mosquito Vectors/virology , Zika Virus Infection/epidemiology , Aedes/virology , Animals , Culex/virology , Female , Humans , Malaysia/epidemiology , Male , Population Surveillance , Real-Time Polymerase Chain Reaction , Zika Virus Infection/etiology , Zika Virus Infection/transmission
3.
Insects ; 9(2)2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29670071

ABSTRACT

This study is intended to provide a comprehensive characterization of the resistance mechanisms in the permethrin-selected (IMR-PSS) and laboratory susceptible (IMR-LS) Aedes aegypti strain from Malaysia. Both IMR-PSS and IMR-LS provide a standard model for use in assessing the pyrethroid resistance in field-collected strains collected from three dengue hotspots: the Taman Seri Bayu (TSB), the Flat Camar (FC), and the Taman Dahlia (TD). Two established methods for determining the resistance mechanisms of the pyrethroid are the quantification of detoxification enzymes via enzyme microassay and the nucleotide sequencing of the domain 2 region from segment 1 to 6 via classical polymerase chain reaction (PCR) amplification-were employed. Enzyme activities in IMR-LS served as the resistance threshold reference, providing a significant standard for comparison with IMR-PSS and other field-collected strains. The amino acids in the domain 2 region of voltage-gated sodium channel (Vgsc) of IMR-LS were served as the reference for detection of any changes of the knockdown resistance (kdr) alleles in IMR-PSS and field-collected strains. Studies clearly indicated that the IMR-LS was highly susceptible to insecticides, whilst the IMR-PSS was highly resistant to pyrethroids and conferred with two resistance mechanisms: the elevated oxidase enzyme activity and the altered target-site mutations. Mutations of V1023G alone, and the combination mutations of V1023G with S996P in IMR-PSS, as well as the in field-collected Aedes aegypti strain, indicate the spread of the (kdr) gene in Aedes aegypti, particularly in dengue-endemic areas in Malaysia.

SELECTION OF CITATIONS
SEARCH DETAIL
...