Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Biochem ; 514: 42-47, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27637923

ABSTRACT

A disintegrin and metalloproteinase 15 (ADAM15), also known as metargidin, plays important roles in regulating inflammation, wound healing, neovascularization, and is an attractive drug target. Fluorescence resonance energy transfer (FRET)-based peptide substrates were tested to identify candidate reagents for high throughput screening and detection of ADAM15 in biological samples. ADAM15 exhibits a unique and diverse activity profile compared to other metalloproteinases. Two FRET substrates, Dabcyl-Gly-Pro-Leu-Gly-Met-Arg-Gly-Lys(FAM)-NH2 (PEPDAB011) and Dabcyl-Ala-Pro-Arg-Trp-Ile-Gln-Asp-Lys(FAM)-NH2 (PEPDAB017), which also detect activities of several matrix metalloproteinases (MMPs -2, -9, and -13), were efficiently cleaved by ADAM15 with specificity constants of 5800 M-1 s-1 and 4300 M-1 s-1, respectively. Additionally, ADAM15 efficiently processed Dabcyl-Leu-Arg-Glu-Gln-Gln-Arg-Leu-Lys-Ser-Lys(FAM)-NH2 (PEPDAB022), which is based on a physiological CD23 cleavage site, with a specificity constant (kcat/Km) of 5200 M-1 s-1. PEPDAB022 was used to screen the ability of known metalloproteinase inhibitors including TAPI-2, marimastat, GI-254023, and the Tissue Inhibitor of Metalloproteinases(TIMPs) 1 and 3 to block ADAM15 activity. Even though ADAM15 exhibits similar substrate preferences to other metalloproteinases, many broad spectrum inhibitors failed to block ADAM15 activity at concentrations as high as 50 µM. Thus, a clear need exists to develop potent and selective ADAM15 inhibitors, and the FRET substrates described herein should aid future research efforts towards this aim.


Subject(s)
ADAM Proteins/antagonists & inhibitors , ADAM Proteins/metabolism , Fluorescent Dyes/metabolism , High-Throughput Screening Assays/methods , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Dipeptides/pharmacology , Enzyme Inhibitors/pharmacology , Fluorescence Resonance Energy Transfer , Humans , Hydroxamic Acids/pharmacology , Kinetics , Peptides/chemistry , Peptides/metabolism
2.
Anal Biochem ; 507: 13-7, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27177841

ABSTRACT

A fluorescent resonance energy transfer substrate with improved sensitivity for ADAM17, -10, and -9 (where ADAM represents a disintegrin and metalloproteinase) has been designed. The new substrate, Dabcyl-Pro-Arg-Ala-Ala-Ala-Homophe-Thr-Ser-Pro-Lys(FAM)-NH2, has specificity constants of 6.3 (±0.3) × 10(4) M(-1) s(-1) and 2.4 (±0.3) × 10(3) M(-1) s(-1) for ADAM17 and ADAM10, respectively. The substrate is more sensitive than widely used peptides based on the precursor tumor necrosis factor-alpha (TNF-alpha) cleavage site, PEPDAB010 or Dabcyl-Ser-Pro-Leu-Ala-Gln-Ala-Val-Arg-Ser-Ser-Lys(FAM)-NH2 and Mca-Pro-Leu-Ala-Gln-Ala-Val-Dpa-Arg-Ser-Ser-Arg-NH2. ADAM9 also processes the new peptide more than 18-fold better than the TNF-alpha-based substrates. The new substrate has a unique selectivity profile because it is processed less efficiently by ADAM8 and MMP1, -2, -3, -8, -9, -12, and -14. This substrate provides a unique tool in which to assess ADAM17, -10, and -9 activities.


Subject(s)
ADAM Proteins/analysis , ADAM Proteins/metabolism , Cell Membrane/metabolism , Fluorescent Dyes/chemistry , ADAM Proteins/chemistry , Cell Line, Tumor , Fluorescence Resonance Energy Transfer , Humans , Hydrolysis , Regression Analysis , Solubility
3.
Anal Biochem ; 484: 75-81, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26026386

ABSTRACT

We have developed a new amplification system for proteinases that is sensitive, simple, and inexpensive to run, exemplified by a horseradish peroxidase (HRP)-conjugated, dual MMP2 (matrix metalloproteinase 2) and ADAM8 (a disintegrin and metalloproteinase 8) peptide substrate assay presented herein. The HRP-conjugated substrate is attached to beads through a 6× histidine tag and then incubated with the target enzyme, cleaving the HRP reporter. This product is subsequently removed from the unreacted bound portions of the substrate by magnetic deposition of the beads. The amount of product is then quantified using a standard HRP color development assay employing 3,3',5,5'-tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2). This HRP amplification system represents a new approach to proteinase assays and could be applied to other enzymes, such as lipases, esterases, and kinases, as long as the unreacted substrate can be physically separated from the product and catalysis by the enzyme to be quantified is not impaired dramatically by steric hindrance from the HRP entity.


Subject(s)
ADAM Proteins/metabolism , Colorimetry/methods , Enzyme Assays/methods , Matrix Metalloproteinase 2/metabolism , Membrane Proteins/metabolism , Amino Acid Sequence , Benzidines/chemistry , Dipeptides/pharmacology , Horseradish Peroxidase/metabolism , Humans , Hydrogen Peroxide/chemistry , Kinetics , Magnets/chemistry , Matrix Metalloproteinase 2/urine , Matrix Metalloproteinase Inhibitors/pharmacology , Microspheres , Nitrilotriacetic Acid/analogs & derivatives , Nitrilotriacetic Acid/chemistry , Organometallic Compounds/chemistry , Peptides/chemistry , Peptides/metabolism , Substrate Specificity
4.
Nat Commun ; 6: 6175, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25629724

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has a grim prognosis with <5% survivors after 5 years. High expression levels of ADAM8, a metalloprotease disintegrin, are correlated with poor clinical outcome. We show that ADAM8 expression is associated with increased migration and invasiveness of PDAC cells caused by activation of ERK1/2 and higher MMP activities. For biological function, ADAM8 requires multimerization and associates with ß1 integrin on the cell surface. A peptidomimetic ADAM8 inhibitor, BK-1361, designed by structural modelling of the disintegrin domain, prevents ADAM8 multimerization. In PDAC cells, BK-1361 affects ADAM8 function leading to reduced invasiveness, and less ERK1/2 and MMP activation. BK-1361 application in mice decreased tumour burden and metastasis of implanted pancreatic tumour cells and provides improved metrics of clinical symptoms and survival in a Kras(G12D)-driven mouse model of PDAC. Thus, our data integrate ADAM8 in pancreatic cancer signalling and validate ADAM8 as a target for PDAC therapy.


Subject(s)
ADAM Proteins/metabolism , Membrane Proteins/metabolism , Molecular Targeted Therapy , Pancreatic Neoplasms/drug therapy , ADAM Proteins/antagonists & inhibitors , Animals , Blotting, Western , Carcinoma, Pancreatic Ductal/enzymology , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Movement/drug effects , Extracellular Space/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Gene Knockdown Techniques , Humans , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Integrin beta1/metabolism , Kaplan-Meier Estimate , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 2/metabolism , Membrane Proteins/antagonists & inhibitors , Mice , Neoplasm Invasiveness , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/pathology , Peptides, Cyclic/pharmacology , Peptides, Cyclic/therapeutic use , Phosphorylation/drug effects , Protein Binding/drug effects , Protein Multimerization/drug effects , Protein Processing, Post-Translational , Signal Transduction/drug effects
5.
Comb Chem High Throughput Screen ; 13(4): 358-65, 2010 May.
Article in English | MEDLINE | ID: mdl-20015014

ABSTRACT

Fluorescence resonance energy transfer substrates were designed and tested as substrates for ADAM9. The donor/quencher pair used were 5-carboxy fluorescein (Fam) and 4-(4-dimethyl-aminophenylazo)benzoyl (Dabcyl) since they have been well studied sensitive fluorescent probes. The peptides based on precursor TNF-alpha, Dabcyl-Ser-Pro-Leu-Ala-Gln-Ala-Val-Arg-Ser-Ser-Lys(Fam)- NH2 and Dabcyl-Leu-Ala-Gln-Ala-HomoPhe-Arg-Ser-Lys(Fam)- NH2, and C-terminal TGF-alpha, Dabcyl-Glu-His-Ala-Asp-Leu-Leu-Ala-Val-Val-Ala-Ala-Lys(Fam)- NH2 cleavage sites were effectively processed by ADAM9 with turnover numbers of 100 +/- 20 x 10(-2) min(-1), 20 +/- 10 x 10(-2) min(-1), and 10 +/- 3 x 10(-2) min(-1). In addition, a peptide based on the 33 kDa cleavage site of the low affinity receptor for IgE, CD23, Dabcyl-Leu-Arg-Ala-Glu-Gln-Gln-Arg-Leu-Lys-Ser-Lys(Fam)- NH2 was processed as well but with less efficiency. A more selective substrate for ADAM9 was found based on the betacellulin cleavage site. However, the valine containing precursor TNF-alpha based substrate was used to measure IC50 values of metalloproteinase inhibitors against ADAM9 since it was processed the most efficiently. The tightest binding inhibitor was the Wyeth Aerst compound, TMI-1, with an IC50 of 2.1 +/- 0.3 nM. In addition, GI254023, previously identified as a selective inhibitor of ADAM10, also inhibited ADAM9 with an IC50 of 280 +/- 110 nM. These results demonstrate that sensitive substrates for ADAM9 can be developed that are useful in high-throughput screening assays for ADAM9.


Subject(s)
ADAM Proteins/metabolism , Fluorescent Dyes/chemistry , Membrane Proteins/metabolism , ADAM Proteins/chemistry , Body Fluids/metabolism , Fluorescence Resonance Energy Transfer , Hydrolysis , Membrane Proteins/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
6.
Anal Biochem ; 366(2): 144-8, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17548045

ABSTRACT

In this paper we describe novel fluorescent substrates for the human ADAM family members ADAM17, ADAM10, ADAM8, and ADAM12 that have good specificity constants and are useful for high-throughput screening of inhibitors. The fluorescence resonance energy transfer substrates contain a 4-(4-dimethylaminophenylazo)benzoyl and 5-carboxyfluorescein (Dabcyl/Fam) pair and are based on known cleavage sequences in precursor tumor necrosis factor-alpha (TNF-alpha) and CD23. The precursor TNF-alpha-based substrate, Dabcyl-Leu-Ala-Gln-Ala-Homophe-Arg-Ser-Lys(Fam)-NH2, is a good substrate for all the ADAMs tested, including ADAM12 for which there is no reported fluorescent substrate. The CD23-based substrate, Dabcyl-His-Gly-Asp-Gln-Met-Ala-Gln-Lys-Ser-Lys(Fam)-NH2, is more selective, being hydrolyzed efficiently only by ADAM8 and ADAM10. The substrates were used to obtain inhibition constants for four inhibitors that are commonly used in shedding assays: TMI-1, GM6001, GW9471, and TAPI-2. The Wyeth Aerst compound, TMI-1, is a potent inhibitor against all of the ADAMs tested and is slow binding against ADAM17.


Subject(s)
ADAM Proteins/metabolism , Fluorescent Dyes/metabolism , Membrane Proteins/metabolism , Protease Inhibitors/metabolism , ADAM Proteins/antagonists & inhibitors , ADAM10 Protein , ADAM12 Protein , ADAM17 Protein , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Dipeptides/chemistry , Dipeptides/metabolism , Dipeptides/pharmacology , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Humans , Hydroxamic Acids/chemistry , Hydroxamic Acids/metabolism , Hydroxamic Acids/pharmacology , Kinetics , Membrane Proteins/antagonists & inhibitors , Morpholines/chemistry , Morpholines/metabolism , Morpholines/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Binding
7.
Biochemistry ; 43(11): 2987-95, 2004 Mar 23.
Article in English | MEDLINE | ID: mdl-15023050

ABSTRACT

Matrix metalloproteinases (MMPs) are a family of enzymes that are up-regulated in many diseases, including osteoarthritis (OA) and rheumatoid arthritis (RA). Here we report on a novel technique that can be used to simultaneously measure activity levels for a panel of enzymes, such as the MMPs. The technique, termed the multiple-enzyme/multiple-reagent assay system (MEMRAS), relies on the use of reagents such as substrates with varying selectivity profiles against a group of enzymes. When reaction rates are measured by following a change in fluorescence with time, for mixtures of enzymes, an equation with unknown concentrations for each activity is generated for each reagent used. Simultaneously solving the set of equations leads to a solution for the unknown concentrations. We have applied this mathematical technique to measure activity levels for mixtures of MMPs such as collagenase 3 and gelatinase A. In addition, because we were most interested in determining collagenase 3 levels as a potential biological marker for OA, we developed highly selective substrates for this enzyme by using results found in previous bacteriophage substrate-mapping experiments. Some of the best substrates tested have specific activities for collagenase 3 that are 37,000-, 17,000-, 90-, and 200-fold selective over stromelysin 1, collagenase 1, and gelatinases A and B, respectively.


Subject(s)
Matrix Metalloproteinases/chemistry , Oligopeptides/chemistry , p-Dimethylaminoazobenzene/analogs & derivatives , Chromogenic Compounds , Collagenases/chemistry , Dinitrobenzenes/chemistry , Enzyme Activation , Fluorescein , Fluorometry , Gelatin , Humans , Indicators and Reagents , Kinetics , Matrix Metalloproteinase 13 , Matrix Metalloproteinase 2/chemistry , Matrix Metalloproteinase 3/chemistry , Matrix Metalloproteinase 9/chemistry , Structure-Activity Relationship , Substrate Specificity , Synovial Fluid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...