Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Cereb Blood Flow Metab ; 38(3): 492-505, 2018 03.
Article in English | MEDLINE | ID: mdl-28318362

ABSTRACT

The CO2/HCO3- buffer minimizes pH changes in response to acid-base loads, HCO3- provides substrate for Na+,HCO3--cotransporters and Cl-/HCO3--exchangers, and H+ and HCO3- modify vasomotor responses during acid-base disturbances. We show here that rat middle cerebral arteries express cytosolic, mitochondrial, extracellular, and secreted carbonic anhydrase isoforms that catalyze equilibration of the CO2/HCO3- buffer. Switching from CO2/HCO3--free to CO2/HCO3--containing extracellular solution results in initial intracellular acidification due to hydration of CO2 followed by gradual alkalinization due to cellular HCO3- uptake. Carbonic anhydrase inhibition decelerates the initial acidification and attenuates the associated transient vasoconstriction without affecting intracellular pH or artery tone at steady-state. Na+,HCO3--cotransport and Na+/H+-exchange activity after NH4+-prepulse-induced intracellular acidification are unaffected by carbonic anhydrase inhibition. Extracellular surface pH transients induced by transmembrane NH3 flux are evident under CO2/HCO3--free conditions but absent when the buffer capacity and apparent H+ mobility increase in the presence of CO2/HCO3- even after the inhibition of carbonic anhydrases. We conclude that (a) intracellular carbonic anhydrase activity accentuates pH transients and vasoconstriction in response to acute elevations of pCO2, (b) CO2/HCO3- minimizes extracellular surface pH transients without requiring carbonic anhydrase activity, and (c) carbonic anhydrases are not rate limiting for acid­base transport across cell membranes during recovery from intracellular acidification.


Subject(s)
Bicarbonates/metabolism , Carbon Dioxide/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Middle Cerebral Artery/drug effects , Acid-Base Imbalance/drug therapy , Acid-Base Imbalance/metabolism , Animals , Carbonic Anhydrases/metabolism , Hydrogen-Ion Concentration , Male , Muscle Contraction/drug effects , Muscle, Smooth, Vascular/drug effects , Rats , Rats, Wistar , Vasoconstriction
SELECTION OF CITATIONS
SEARCH DETAIL
...