Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Food Sci Nutr ; 5(4): 934-942, 2017 07.
Article in English | MEDLINE | ID: mdl-28748083

ABSTRACT

Lactadherin was originally described due to its appearance in milk, but is abundantly expressed especially by professional and nonprofessional phagocytes. The proteins has been shown to have a multitude of bioactive effects, including inhibition of inflammatory phospholipases, induction of effero- and phagocytosis, prevent rotavirus induced gastroenteritis, and modulate intestinal homeostasis by regulating epithelial cell migration. The level of expression seems to be important in a row of serious pathologies linked to the intestinal epithelial barrier function, vascular- and autoimmune disease. This study examines the ability of lactadherin to modulate migration of intestinal epithelium. A cell exclusion assay is used to quantify the ability of human, bovine and murine lactadherin orthologs to affect migration of primary small intestine epithelium cells. Previous reports show that recombinant murine lactadherin stimulate rat small intestine cell migration. The present study could not confirm this. Conversely, 10 µg/ml lactadherin inhibits migration. Therefore, as lactadherins enteroprotective properties is well established using in vivo models we conclude that the protective effects are linked to lactadherins ability operate as an opsonin, or other modulating effects, and not a direct lactadherin-cell induction of migration. Thus, the molecular mechanism behind the enteroprotective role of lactadherin remains to be established.

2.
J Agric Food Chem ; 65(21): 4280-4288, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28489400

ABSTRACT

Rotaviral gastroenteritis is associated with significant morbidity in developed countries and a high rate of infant mortality in developing countries. Diverse studies have demonstrated that a wide range of milk-derived fractions exhibit antirotaviral activity. The present study shows the antirotaviral activity of some bovine and ovine dairy byproducts, buttermilk, butter serum, and milk fat globule membrane (MFGM), and evaluates the effect of cream washing and heat treatment on that activity. Furthermore, the rotavirus-neutralizing activity was evaluated for some MFGM proteins, such as xanthine oxidase and lactophorin. Ovine and bovine buttermilk reached rotavirus-neutralizing values of 51.3 and 32.2%, at 1 mg/mL, respectively. The cream washing process led to a significant decrease in the antirotaviral activity of fractions. This activity was also influenced by heat treatment. Treatment at 75 °C for 20 s caused 24.6 and 36.1% decreases of activity in bovine and ovine buttermilk, respectively, and 85 °C for 10 min caused decreases of 80.9 and 79.0% in both fractions, respectively.


Subject(s)
Antiviral Agents/pharmacology , Milk/chemistry , Rotavirus/drug effects , Animals , Antiviral Agents/chemistry , Cattle , Sheep , Waste Products/analysis
3.
Metab Eng Commun ; 3: 76-83, 2016 Dec.
Article in English | MEDLINE | ID: mdl-29468115

ABSTRACT

Quantifying the ability of a compound to modulate cell migration rate is a crucial part of many studies including those on chemotaxis, wound healing and cancer metastasis. Existing migration assays all have their strengths and weaknesses. The "scratch" assay is the most widely used because it seems appealingly simple and inexpensive. However, the scratch assay has some important limitations, as the tool introducing the "wound" might injure/stress the boundary cells and/or harm underlying matrix coatings, which in both cases will affect cell migration. This described method is a Cell Exclusion Zone Assay, in which cell-free areas are created by growing cells around removable silicone stoppers. Upon appropriate staining with fluorescent dyes and microscopically visualizing the monolayers, the migration rate is then quantified by counting the cells (nuclei) intruding the void area left by the silicone insert. In the current study human small intestine epithelial cells were seeded on a physiological substrate matrix to produce collectively migrating monolayers. Different substrates were tested to determine the optimal surface for enterocyte adherence and migration and morphological changes monitored. Recombinant human epidermal growth factor and osteopontin purified from urine were tested to see if the established migration assay produces accurate and reliable migration data with human small intestine cells. The obtained data accurately confirmed that the two bioactive proteins modulate cellular migration in a dose-dependent manner. The presented assay can likely be converted for use with other adherent cell lines or substrate matrices and allows for high throughput, while cost is kept low and versatility high. Co-staining can be applied in order to assay for cell death, different cell types, cell stress and others allowing intricate analysis of migration rate of mixed populations and correction for cell viability.

4.
J Biol Chem ; 285(28): 21411-5, 2010 Jul 09.
Article in English | MEDLINE | ID: mdl-20452979

ABSTRACT

Hydroxyurea (HU) is a well tolerated ribonucleotide reductase inhibitor effective in HIV, sickle cell disease, and blood cancer therapy. Despite a positive initial response, however, most treated cancers eventually progress due to development of HU resistance. Although RNR properties influence HU resistance in cell lines, the mechanisms underlying cancer HU resistance in vivo remain unclear. To address this issue, we screened for HU resistance in the plant Arabidopsis thaliana and identified seventeen unique catalase mutants, thereby establishing that HU toxicity depends on catalase in vivo. We further demonstrated that catalase is a direct HU target by showing that HU acts as a competitive inhibitor of catalase-mediated hydrogen peroxide decomposition. Considering also that catalase can accelerate HU decomposition in vitro and that co-treatment with another catalase inhibitor alleviates HU effects in vivo, our findings suggests that HU could act as a catalase-activated pro-drug. Clinically, we found high catalase activity in circulating cells from untreated chronic myeloid leukemia, offering a possible explanation for the efficacy of HU against this malignancy.


Subject(s)
Arabidopsis/metabolism , Catalase/chemistry , Drug Resistance, Neoplasm , Hydroxyurea/chemistry , Plant Extracts/pharmacology , Animals , Antineoplastic Agents/pharmacology , Chemistry, Pharmaceutical/methods , Erythrocytes/drug effects , Erythrocytes/pathology , Inhibitory Concentration 50 , Prodrugs/chemistry , Protein Binding , Rats , Ribonucleotide Reductases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL