Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Cancer ; 128(10): 1941-1954, 2023 05.
Article in English | MEDLINE | ID: mdl-36959380

ABSTRACT

BACKGROUND: Systemic therapy for metastatic clear cell sarcoma (CCS) bearing EWSR1-CREB1/ATF1 fusions remains an unmet clinical need in children, adolescents, and young adults. METHODS: To identify key signaling pathway vulnerabilities in CCS, a multi-pronged approach was taken: (i) genomic and transcriptomic landscape analysis, (ii) integrated chemical biology interrogations, (iii) development of CREB1/ATF1 inhibitors, and (iv) antibody-drug conjugate testing (ADC). The first approach encompassed DNA exome and RNA deep sequencing of the largest human CCS cohort yet reported consisting of 47 patient tumor samples and 8 cell lines. RESULTS: Sequencing revealed recurrent mutations in cell cycle checkpoint, DNA double-strand break repair or DNA mismatch repair genes, with a correspondingly low to intermediate tumor mutational burden. DNA multi-copy gains with corresponding high RNA expression were observed in CCS tumor subsets. CCS cell lines responded to the HER3 ADC patritumab deruxtecan in a dose-dependent manner in vitro, with impaired long term cell viability. CONCLUSION: These studies of the genomic, transcriptomic and chemical biology landscape represent a resource 'atlas' for the field of CCS investigation and drug development. CHK inhibitors are identified as having potential relevance, CREB1 inhibitors non-dependence of CCS on CREB1 activity was established, and the potential utility of HER3 ADC being used in CCS is found.


Subject(s)
Sarcoma, Clear Cell , Child , Adolescent , Young Adult , Humans , Sarcoma, Clear Cell/genetics , Sarcoma, Clear Cell/metabolism , Sarcoma, Clear Cell/pathology , Transcriptome , Genomics , Base Sequence , RNA , Oncogene Proteins, Fusion/genetics
2.
Clin Transl Med ; 12(7): e961, 2022 07.
Article in English | MEDLINE | ID: mdl-35839307

ABSTRACT

BACKGROUND: Metastatic epithelioid sarcoma (EPS) remains a largely unmet clinical need in children, adolescents and young adults despite the advent of EZH2 inhibitor tazemetostat. METHODS: In order to realise consistently effective drug therapies, a functional genomics approach was used to identify key signalling pathway vulnerabilities in a spectrum of EPS patient samples. EPS biopsies/surgical resections and cell lines were studied by next-generation DNA exome and RNA deep sequencing, then EPS cell cultures were tested against a panel of chemical probes to discover signalling pathway targets with the most significant contributions to EPS tumour cell maintenance. RESULTS: Other biologically inspired functional interrogations of EPS cultures using gene knockdown or chemical probes demonstrated only limited to modest efficacy in vitro. However, our molecular studies uncovered distinguishing features (including retained dysfunctional SMARCB1 expression and elevated GLI3, FYN and CXCL12 expression) of distal, paediatric/young adult-associated EPS versus proximal, adult-associated EPS. CONCLUSIONS: Overall results highlight the complexity of the disease and a limited chemical space for therapeutic advancement. However, subtle differences between the two EPS subtypes highlight the biological disparities between younger and older EPS patients and emphasise the need to approach the two subtypes as molecularly and clinically distinct diseases.


Subject(s)
DNA-Binding Proteins , Sarcoma , Adolescent , Child , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/therapeutic use , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/therapeutic use , Genomics , Humans , Sarcoma/drug therapy , Sarcoma/genetics , Sarcoma/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/therapeutic use , Young Adult
3.
Sci Rep ; 11(1): 23302, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857796

ABSTRACT

Preclinical cancer research ranges from in vitro studies that are inexpensive and not necessarily reflective of the tumor microenvironment to mouse studies that are better models but prohibitively expensive at scale. Chorioallantoic membrane (CAM) assays utilizing Japanese quail (Coturnix japonica) are a cost-effective screening method to precede and minimize the scope of murine studies for anti-cancer efficacy and drug toxicity. To increase the throughput of CAM assays we have built and optimized an 11-day platform for processing up to 200 quail eggs per screening to evaluate drug efficacy and drug toxicity caused by a therapeutic. We demonstrate ex ovo concordance with murine in vivo studies, even when the in vitro and in vivo studies diverge, suggesting a role for this quail shell-free CAM xenograft assay in the validation of new anti-cancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Biomimetics/methods , Chorioallantoic Membrane , Drug Screening Assays, Antitumor/methods , Eggs , Animals , Antineoplastic Agents/toxicity , Hep G2 Cells , Heterografts , Humans , In Vitro Techniques , Mice , Quail
SELECTION OF CITATIONS
SEARCH DETAIL
...