Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (205)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38619261

ABSTRACT

Gene therapy is a powerful technology to deliver new genes to a patient for the treatment of disease, be it to introduce a functional gene, inactivate a toxic gene, or provide a gene whose product can modulate the biology of the disease. The delivery method for the therapeutic vector can take many forms, ranging from intravenous infusion for systemic delivery to direct injection into the target tissue. For neurodegenerative disorders, it is often desirable to skew transduction towards the brain and/or spinal cord. The least invasive approach to target the entire central nervous system involves injection into the cerebrospinal fluid (CSF), allowing the therapeutic to reach a large fraction of the central nervous system. The safest approach to deliver a vector into the CSF is the lumbar intrathecal injection, where a needle is introduced into the lumbar cistern of the spinal cord. This technique, also known as a lumbar puncture, has been widely used in neonatal and adult rodents and in large animal models. While the technique is similar across species and developmental stages, subtle differences in size, structure, and elasticity of tissues surrounding the intrathecal space require accommodations in the approach. This article describes a method for performing lumbar puncture in juvenile rats to deliver an adeno-associated serotype 9 vector. Here, 25-35 µL of vector were injected into the lumbar cistern, and a green fluorescent protein (GFP) reporter was used to evaluate the transduction profile resulting from each injection. The benefits and challenges of this approach are discussed.


Subject(s)
Central Nervous System , Spinal Cord , Adult , Rats , Animals , Humans , Injections , Accommodation, Ocular , Brain
2.
PLoS One ; 17(7): e0271593, 2022.
Article in English | MEDLINE | ID: mdl-35857792

ABSTRACT

Here, we describe DAB-quant, a novel, open-source program designed to facilitate objective quantitation of immunohistochemical (IHC) signal in large numbers of tissue slides stained with 3,3'-diaminobenzidine (DAB). Scanned slides are arranged into separate folders for negative controls and test slides, respectively. Otsu's method is applied to the negative control slides to define a threshold distinguishing tissue from empty space, and all pixels deemed tissue are scored for normalized red minus blue (NRMB) color intensity. Next, a user-defined tolerance for error is applied to the negative control slides to set a NRMB threshold distinguishing stained from unstained tissue and this threshold is applied to calculate the fraction of stained tissue pixels on each test slide. Results are recorded in a spreadsheet and pseudocolor images are presented to document how each pixel was categorized. Slides can be analyzed in full, or sampled using small boxes scattered randomly and automatically across the tissue area. Quantitation of sampling boxes enables faster processing, reveals the degree of heterogeneity of signal, and enables exclusion of problem areas on a slide, if needed. This system should prove useful for a broad range of applications. The code, usage instructions, and sample data are freely and publicly available on GitHub (https://github.com/sarafridov/DAB-quant) and at protocols.io (dx.doi.org/10.17504/protocols.io.dm6gpb578lzp/v1).


Subject(s)
3,3'-Diaminobenzidine , Staining and Labeling
3.
J Inherit Metab Dis ; 45(2): 203-214, 2022 03.
Article in English | MEDLINE | ID: mdl-34964137

ABSTRACT

Classic galactosemia (CG) results from profound deficiency of galactose-1-P uridylyltransferase (GALT). Despite early detection by newborn screening and lifelong dietary restriction of galactose, most patients grow to experience a range of long-term complications. Recently, we developed and characterized a GALT-null rat model of CG and demonstrated that AAV9-hGALT, administered by tail vein injection to neonatal pups, dramatically improved plasma, liver, and brain galactose metabolites at 2 weeks posttreatment. Here we report a time-course study of GALT restoration in rats treated as neonates with scAAV9-hGALT and harvested at 8, 14, 30, and 60 days. Cohorts of rats in the two older groups were weaned to diets containing either 1% or 3% of calories from galactose. As expected, GALT activity in all treated animals peaked early and then diminished over time, most notably in liver, ostensibly due to dilution of the nonreplicating episomal vector as transduced cells divided. All treated rats showed dramatic metabolic rescue through 1 month, and those weaned to the lower galactose diet showed continued strong metabolic rescue into adulthood (2 months). Prepubertal growth delay and cataracts were both partially rescued by treatment. Finally, we found that UDP glucose pyrophosphorylase (UGP), which offers a metabolic bypass around missing GALT, was 3-fold more active in brain samples from adult rats than from young pups, offering a possible explanation for the improved ability of older GALT-null rats to metabolize galactose. Combined, these results document promising metabolic and phenotypic efficacy of neonatal GALT gene replacement in a rat model of classic galactosemia.


Subject(s)
Cataract , Galactosemias , Adult , Animals , Cataract/metabolism , Galactose/metabolism , Galactosemias/diagnosis , Humans , Infant, Newborn , Liver/metabolism , Neonatal Screening , Rats , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , UTP-Hexose-1-Phosphate Uridylyltransferase/metabolism
4.
J Inherit Metab Dis ; 44(1): 272-281, 2021 01.
Article in English | MEDLINE | ID: mdl-32882063

ABSTRACT

Classic galactosemia (CG) is a rare metabolic disorder that results from profound deficiency of galactose-1-P uridylyltransferase (GALT). Despite early detection by newborn screening and rapid and lifelong dietary restriction of galactose, which is the current standard of care, most patients grow to experience a broad constellation of long-term complications. The mechanisms underlying these complications remain unclear and likely differ by tissue. Here we conducted a pilot study testing the safety and efficacy of GALT gene replacement using our recently-described GALT-null rat model for CG. Specifically, we administered AAV9.CMV.HA-hGALT to seven GALT-null rat pups via tail vein injection on day 3 of life; eight GALT-null pups injected with PBS served as the negative control, and four GALT+ heterozygous pups injected with PBS served as the positive control. All pups were returned to their nursing mothers, weighed daily, and euthanized for tissue collection 2 weeks later. Among the AAV9-injected pups in this study, we achieved GALT levels in liver ranging from 64% to 595% wild-type, and in brain ranging from 3% to 42% wild-type. In liver, brain, and blood samples from these animals we also saw a striking drop in galactose, galactitol, and gal-1P. Finally, all treated GALT-null pups showed dramatic improvement in cataracts relative to their mock-treated counterparts. Combined, these results demonstrate that GALT restoration in both liver and brain of GALT-null rats by neonatal tail vein administration using AAV9 is not only attainable but effective.


Subject(s)
Cataract/therapy , Dependovirus/genetics , Galactose/metabolism , Galactosemias/therapy , Genetic Therapy/methods , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , Animals , Animals, Newborn , Brain/metabolism , Cataract/metabolism , Dependovirus/metabolism , Disease Models, Animal , Galactosemias/genetics , Galactosemias/metabolism , Liver/metabolism , Pilot Projects , Rats
5.
J Inherit Metab Dis ; 43(3): 518-528, 2020 05.
Article in English | MEDLINE | ID: mdl-31845342

ABSTRACT

Classic galactosemia (CG) is a potentially lethal inborn error of metabolism, if untreated, that results from profound deficiency of galactose-1-phosphate uridylyltransferase (GALT), the middle enzyme of the Leloir pathway of galactose metabolism. While newborn screening and rapid dietary restriction of galactose prevent or resolve the potentially lethal acute symptoms of CG, by mid-childhood, most treated patients experience significant complications. The mechanisms underlying these long-term deficits remain unclear. Here we introduce a new GALT-null rat model of CG and demonstrate that these rats display cataracts, cognitive, motor, and growth phenotypes reminiscent of patients outcomes. We further apply the GALT-null rats to test how well blood biomarkers, typically followed in patients, reflect metabolic perturbations in other, more relevant tissues. Our results document that the relative levels of galactose metabolites seen in GALT deficiency differ widely by tissue and age, and that red blood cell Gal-1P, the marker most commonly followed in patients, shows no significant association with Gal-1P in other tissues. The work reported here establishes our outbred GALT-null rats as an effective model for at least four complications characteristic of CG, and sets the stage for future studies addressing mechanism and testing the efficacy of novel candidate interventions.


Subject(s)
Disease Models, Animal , Galactose/metabolism , Galactosemias/metabolism , Galactosephosphates/metabolism , Animals , Animals, Newborn , Female , Galactosemias/genetics , Male , Phenotype , Rats , Rats, Sprague-Dawley , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics
6.
J Mol Signal ; 10: 6, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-27096004

ABSTRACT

Activator of G-protein signaling 3 (AGS3) is an accessory protein that functions to regulate the activation status of heterotrimeric G-protein subunits. To date, however, the downstream signaling pathways regulated by AGS3 remain to be fully elucidated, particularly in renal epithelial cells. In the present study, normal rat kidney (NRK-52E) proximal tubular epithelial cells were genetically modified to regulate the expression of AGS3 to investigate its role on MAPK and mTOR signaling to control epithelial cell number. Knockdown of endogenous AGS3 protein was associated with a reduced phosphorylated form of ERK5 and increased apoptosis as determined by elevated cleaved caspase-3. In the presence of the ERK5 inhibitor, BIX02189, a significant 2-fold change (P < 0.05) in G2/M transition state was detected compared to control conditions. Neither of the other MAPK, ERK1/2 or p38 MAPK, nor another pro-survival pathway, mTOR, was significantly altered by the changes in AGS3 protein levels in the renal epithelial cells. The selective ERK5 inhibitor, BIX02189, was found to dose-dependently reduce NRK cell number by up to 41% (P < 0.05) compared to control cells. In summary, these findings demonstrated that cell viability was regulated by AGS3 and was associated with ERK5 activation in renal epithelial cells.

7.
Proc Natl Acad Sci U S A ; 109(52): 21462-7, 2012 Dec 26.
Article in English | MEDLINE | ID: mdl-23236168

ABSTRACT

Polycystic kidney diseases are the most common genetic diseases that affect the kidney. There remains a paucity of information regarding mechanisms by which G proteins are regulated in the context of polycystic kidney disease to promote abnormal epithelial cell expansion and cystogenesis. In this study, we describe a functional role for the accessory protein, G-protein signaling modulator 1 (GPSM1), also known as activator of G-protein signaling 3, to act as a modulator of cyst progression in an orthologous mouse model of autosomal dominant polycystic kidney disease (ADPKD). A complete loss of Gpsm1 in the Pkd1(V/V) mouse model of ADPKD, which displays a hypomorphic phenotype of polycystin-1, demonstrated increased cyst progression and reduced renal function compared with age-matched cystic Gpsm1(+/+) and Gpsm1(+/-) mice. Electrophysiological studies identified a role by which GPSM1 increased heteromeric polycystin-1/polycystin-2 ion channel activity via Gßγ subunits. In summary, the present study demonstrates an important role for GPSM1 in controlling the dynamics of cyst progression in an orthologous mouse model of ADPKD and presents a therapeutic target for drug development in the treatment of this costly disease.


Subject(s)
Carrier Proteins/metabolism , Disease Progression , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/pathology , Animals , Disease Models, Animal , Electrophysiological Phenomena , Fluorescent Antibody Technique , Genotype , Guanine Nucleotide Dissociation Inhibitors , Kidney/metabolism , Kidney/pathology , Kidney/physiopathology , Kidney Function Tests , Mice , Polycystic Kidney, Autosomal Dominant/physiopathology , Protein Transport , TRPP Cation Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...