Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Noncoding RNA ; 10(2)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38668386

ABSTRACT

The long non-coding RNA (lncRNA) hepatocyte nuclear factor-1 alpha (HNF1A) antisense RNA 1 (HNF1A-AS1) is an important lncRNA for liver growth, development, cell differentiation, and drug metabolism. Like many lncRNAs, HNF1A-AS1 has multiple annotated alternative transcripts in the human genome. Several fundamental biological questions are still not solved: (1) How many transcripts really exist in biological samples, such as liver samples and liver cell lines? (2) What are the expression patterns of different alternative HNF1A-AS1 transcripts at different conditions, including during cell growth and development, after exposure to xenobiotics (such as drugs), and in disease conditions, such as metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD) cirrhosis, and obesity? (3) Does the siRNA used in previous studies knock down one or multiple transcripts? (4) Do different transcripts have the same or different functions for gene regulation? The presented data confirm the existence of several annotated HNF1A-AS1 transcripts in liver samples and cell lines, but also identify some new transcripts, which are not annotated in the Ensembl genome database. Expression patterns of the identified HNF1A-AS1 transcripts are highly correlated with the cell differentiation of matured hepatocyte-like cells from human embryonic stem cells (hESC), growth and differentiation of HepaRG cells, in response to rifampicin induction, and in various liver disease conditions. The expression levels of the HNF1A-AS1 transcripts are also highly correlated to the expression of cytochrome P450 enzymes, such as CYP3A4, during HepaRG growth, differentiation, and in response to rifampicin induction.

2.
Pharmacol Rev ; 76(1): 49-89, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37696583

ABSTRACT

Systemic diseases of liver origin (SDLO) are complex diseases in multiple organ systems, such as cardiovascular, musculoskeletal, endocrine, renal, respiratory, and sensory organ systems, caused by irregular liver metabolism and production of functional factors. Examples of such diseases discussed in this article include primary hyperoxaluria, familial hypercholesterolemia, acute hepatic porphyria, hereditary transthyretin amyloidosis, hemophilia, atherosclerotic cardiovascular diseases, α-1 antitrypsin deficiency-associated liver disease, and complement-mediated diseases. Nucleic acid therapeutics use nucleic acids and related compounds as therapeutic agents to alter gene expression for therapeutic purposes. The two most promising, fastest-growing classes of nucleic acid therapeutics are antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs). For each listed SDLO disease, this article discusses epidemiology, symptoms, genetic causes, current treatment options, and advantages and disadvantages of nucleic acid therapeutics by either ASO or siRNA drugs approved or under development. Furthermore, challenges and future perspectives on adverse drug reactions and toxicity of ASO and siRNA drugs for the treatment of SDLO diseases are also discussed. In summary, this review article will highlight the clinical advantages of nucleic acid therapeutics in targeting the liver for the treatment of SDLO diseases. SIGNIFICANCE STATEMENT: Systemic diseases of liver origin (SDLO) contain rare and common complex diseases caused by irregular functions of the liver. Nucleic acid therapeutics have shown promising clinical advantages to treat SDLO. This article aims to provide the most updated information on targeting the liver with antisense oligonucleotides and small interfering RNA drugs. The generated knowledge may stimulate further investigations in this growing field of new therapeutic entities for the treatment of SDLO, which currently have no or limited options for treatment.


Subject(s)
Liver Diseases , Nucleic Acids , Humans , Nucleic Acids/therapeutic use , RNA, Small Interfering/therapeutic use , Oligonucleotides, Antisense/adverse effects , Liver Diseases/drug therapy
3.
ACS Pharmacol Transl Sci ; 5(11): 1007-1016, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36407951

ABSTRACT

Due to the lack of treatment options for the genetic disease primary hyperoxaluria (PH), including three subtypes PH1, PH2, and PH3, caused by accumulation of oxalate forming kidney stones, there is an urgent need for the development of a drug therapy aside from siRNA drug lumasiran for patients with PH1. After the recent success of drug therapies based on small interfering RNA (siRNA), nedosiran is currently being developed for the treatment of three types of PH as a siRNA-based modality. Through specific inhibition of lactate dehydrogenase enzyme, the key enzyme in biosynthesis of oxalate in liver, phase 1, 2, and 3 clinical trials of nedosiran have achieved the desired primary end point of reduction of urinary oxalate levels in patients with PH1. More PH2 and PH3 patients need to be tested for efficacy. It has also produced a favorable secondary end point on safety and toxicity in PH patients. In addition to common injection site reactions that resolved spontaneously, no severe nedosiran treatment-associated adverse events were reported. Based on the positive results in the clinical studies, nedosiran is a candidate siRNA drug to treat PH patients.

5.
Drug Metab Dispos ; 50(6): 888-897, 2022 06.
Article in English | MEDLINE | ID: mdl-35221287

ABSTRACT

Absorption, distribution, metabolism, and excretion (ADME) are the key biologic processes for determination of a drug's pharmacokinetic parameters, which have direct impacts on efficacy and adverse drug reactions (ADRs). The chemical structures, dosage forms, and sites and routes of administration are the principal determinants of ADME profiles and consequent impacts on their efficacy and ADRs. Newly developed large molecule biologic antisense oligonucleotide (ASO) drugs have completely unique ADME that is not fully defined. ASO-based drugs are single-stranded synthetic antisense nucleic acids with diverse modes of drug actions from induction of mRNA degradation, exon skipping and restoration, and interactions with proteins. ASO drugs have a great potential to treat certain human diseases that have remained untreatable with small molecule-based drugs. The ADME of ASO drugs contributes to their unique set of ADRs and toxicity. In this review, to better understand their ADME, the 10 US Food and Drug Administration (FDA)-approved ASO drugs were selected: fomivirsen, pegaptanib, mipomersen, nusinersen, inotersen, defibrotide, eteplirsen, golodirsen, viltolarsen, and casimersen. A meta-analysis was conducted on their formulation, dosage, sites of administration, local and systematic distribution, metabolism, degradation, and excretion. Membrane permeabilization through endocytosis and nucleolytic degradation by endonucleases and exonucleases are major ADME features of the ASO drugs that differ from small-molecule drugs. The information summarized here provides comprehensive ADME characteristics of FDA-approved ASO drugs, leading to a better understanding of their therapeutic efficacy and their potential ADRs and toxicity. Numerous knowledge gaps, particularly on cellular uptake and subcellular trafficking and distribution, are identified, and future perspectives and directions are discussed. SIGNIFICANCE STATEMENT: Through a systematic analysis of the existing information of absorption, distribution, metabolism, and excretion (ADME) parameters for 10 US Food and Drug Administration (FDA)-approved antisense oligonucleotide (ASO) drugs, this review provides an overall view of the unique ADME characteristics of ASO drugs, which are distinct from small chemical drug ADME. This knowledge is useful for discovery and development of new ASO drugs as well as clinical use of current FDA-approved ASO drugs.


Subject(s)
Biological Products , Drug-Related Side Effects and Adverse Reactions , Drug-Related Side Effects and Adverse Reactions/genetics , Exons , Humans , Oligonucleotides , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/therapeutic use , United States , United States Food and Drug Administration
6.
Drug Metab Dispos ; 50(6): 879-887, 2022 06.
Article in English | MEDLINE | ID: mdl-35221289

ABSTRACT

The market for large molecule biologic drugs has grown rapidly, including antisense oligonucleotide (ASO) drugs. ASO drugs work as single-stranded synthetic oligonucleotides that reduce production or alter functions of disease-causing proteins through various mechanisms, such as mRNA degradation, exon skipping, and ASO-protein interactions. Since the first ASO drug, fomivirsen, was approved in 1998, the U.S. Food and Drug Administration (FDA) has approved 10 ASO drugs to date. Although ASO drugs are efficacious in treating some diseases that are untargetable by small-molecule chemical drugs, concerns on adverse drug reactions (ADRs) and toxicity cannot be ignored. Illustrative of this, mipomersen was recently taken off the market due to its hepatotoxicity risk. This paper reviews ADRs and toxicity from FDA drug labeling, preclinical studies, clinical trials, and postmarketing real-world studies on the 10 FDA-approved ASO drugs, including fomivirsen and pegaptanib, mipomersen, nusinersen, inotersen, defibrotide, eteplirsen, golodirsen, viltolarsen, and casimersen. Unique and common ADRs and toxicity for each ASO drug are summarized here. The risk of developing hepatotoxicity, kidney toxicity, and hypersensitivity reactions co-exists for multiple ASO drugs. Special precautions need to be in place when certain ASO drugs are administrated. Further discussion is extended on studying the mechanisms of ADRs and toxicity of these drugs, evaluating the existing physiologic and pathologic states of patients, optimizing the dose and route of administration, and formulating personalized treatment plans to improve the clinical utility of FDA-approved ASO drugs and discovery and development of new ASO drugs with reduced ADRs. SIGNIFICANCE STATEMENT: The current review provides a comprehensive analysis of unique and common ADRs and the toxicity of FDA-approved ASO drugs. The information can help better manage the risk of severe hepatotoxicity, kidney toxicity, and hypersensitivity reactions in the usage of currently approved ASO drugs and the discovery and development of new and safer ASO drugs.


Subject(s)
Chemical and Drug Induced Liver Injury , Drug-Related Side Effects and Adverse Reactions , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/etiology , Humans , Oligonucleotides/adverse effects , Oligonucleotides, Antisense/adverse effects , Oligonucleotides, Antisense/genetics , United States , United States Food and Drug Administration
7.
Curr Opin Toxicol ; 322022 Dec.
Article in English | MEDLINE | ID: mdl-37193356

ABSTRACT

The field of antisense oligonucleotide (ASO)-based therapies have been making strides in precision medicine due to their potent therapeutic application. Early successes in treating some genetic diseases are now attributed to an emerging class of antisense drugs. After two decades, the US Food and Drug Administration (FDA) has approved a considerable number of ASO drugs, primarily to treat rare diseases with optimal therapeutic outcomes. However, safety is one of the biggest challenges to the therapeutic utility of ASO drugs. Due to patients' and health care practitioners' urgent demands for medicines for untreatable conditions, many ASO drugs have been approved. However, a complete understanding of the mechanisms of adverse drug reactions (ADRs) and toxicities of ASOs still need to be resolved. The range of ADRs is unique to a specific drug, while few ADRs are common to a section of drugs as a whole. Nephrotoxicity is an important concern that needs to be addressed considering the clinical translation of any drug candidates ranging from small molecules to ASO-based drugs. This article encompasses what is known about the nephrotoxicity of ASO drugs, the potential mechanisms of action(s), and recommendations for future investigations on the safety of ASO drugs.

8.
Cell Prolif ; 54(2): e12978, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33393114

ABSTRACT

OBJECTIVES: The final stage of liver development is the production of hepatocytes and cholangiocytes (biliary epithelial cells) from bipotent hepatic progenitor cells. We used HepaRG cells, which are bipotent and able to differentiate into both hepatocytes and cholangiocytes, as a model to study the action of a novel lncRNA (lnc-RHL) and its role in the regulation of bipotency leading to hepatocytes and cholangiocytes. MATERIALS AND METHODS: Differentiation of HepaRG cells was assessed by marker expression and morphology which revealed their ability to differentiate into hepatocytes and cholangiocytes (modelling the behaviour of hepatoblasts in vivo). Using a qRT-PCR and RACE, we cloned a novel lncRNA (lnc-RHL; regulator of hepatic lineages) that is upregulated upon HepaRG differentiation. Using inducible knockdown of lnc-RHL concurrently with differentiation, we show that lnc-RHL is required for proper HepaRG cell differentiation resulting in diminution of the hepatocyte lineage. RESULTS: Here, we report the discovery of lnc-RHL, a spliced and polyadenylated 670 base lncRNA expressed from the 11q23.3 apolipoprotein gene cluster. lnc-RHL expression is confined to hepatic lineages and is upregulated when bipotent HepaRG cells are caused to differentiate. HepaRG cells made deficient for lnc-RHL have reduced ability to differentiate into hepatocytes, but retain their ability to differentiate into cholangiocytes. CONCLUSIONS: Deficiency for lnc-RHL in HepaRG cells converts them from bipotent progenitor cells to unipotent progenitor cells with impaired ability to yield hepatocytes. We conclude that lnc-RHL is a key regulator of bipotency in HepaRG cells.


Subject(s)
Cell Differentiation/genetics , Hepatocytes/metabolism , RNA, Long Noncoding/metabolism , Apolipoproteins/genetics , Apolipoproteins/metabolism , Cell Differentiation/drug effects , Cell Lineage , Child , Chromosomes, Human, Pair 11 , Doxorubicin/pharmacology , Female , Hep G2 Cells , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Hepatocytes/cytology , Humans , Liver/metabolism , Male , Multigene Family , RNA Interference , RNA, Long Noncoding/antagonists & inhibitors , RNA, Long Noncoding/genetics , RNA, Small Interfering/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Young Adult
9.
Biochem Pharmacol ; 189: 114432, 2021 07.
Article in English | MEDLINE | ID: mdl-33513339

ABSTRACT

More than two decades after the natural gene-silencing mechanism of RNA interference was elucidated, small interfering RNA (siRNA)-based therapeutics have finally broken into the pharmaceutical market. With three agents already approved and many others in advanced stages of the drug development pipeline, siRNA drugs are on their way to becoming a standard modality of pharmacotherapy. The majority of late-stage candidates are indicated for rare or orphan diseases, whose patients have an urgent need for novel and effective therapies. Additionally, there are agents that have the potential to meet the need of a broader population. Inclisiran, for instance, is being developed for hypercholesterolemia and has shown benefit in patients who are uncontrolled even after maximal statin therapy. This review provides a brief overview of mechanisms of siRNA action, physiological barriers to its delivery and activity, and the most common chemical modifications and delivery platforms used to overcome these barriers. Furthermore, this review presents comprehensive profiles of the three approved siRNA drugs (patisiran, givosiran, and lumasiran) and the seven other siRNA candidates in Phase 3 clinical trials (vutrisiran, nedosiran, inclisiran, fitusiran, teprasiran, cosdosiran, and tivanisiran), summarizing their modifications and delivery strategies, disease-specific mechanisms of action, updated clinical trial status, and future outlooks.


Subject(s)
Clinical Trials as Topic/methods , Drug Development/methods , Genetic Therapy/methods , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Animals , Gene Transfer Techniques , Humans , Hypercholesterolemia/drug therapy , Hypercholesterolemia/genetics , Hypercholesterolemia/metabolism , Nervous System Diseases/drug therapy , Nervous System Diseases/genetics , Nervous System Diseases/metabolism , RNA, Small Interfering/metabolism
10.
Semin Cancer Biol ; 75: 38-48, 2021 10.
Article in English | MEDLINE | ID: mdl-33346133

ABSTRACT

Epithelial to mesenchymal transition (EMT) is a cellular process in which cells composing epithelial tissue lose requirements for physical contact with neighboring cells and acquire mesenchymal characteristics consisting of increased migratory and invasive behaviors. EMT is a fundamental process that is required for initial and later events during embryogenesis. Cancer stem cells (CSCs) possess multipotency sufficient for their differentiation into bulk tumor cells and also have the capacity to undergo EMT. When CSCs initiate EMT programs the resulting cancerous mesenchymal cells become invasive and this migratory behavior also poises them for metastatic activity. Long noncoding RNAs (lncRNAs) are functional RNA molecules that do not encode proteins, yet regulate the expression of protein-coding genes through recruitment or sequestration of gene-regulatory proteins and microRNAs. lncRNA exhibit tissue-specific patterns of gene expression during development and specific sets of lncRNAs are also involved in various cancer types. This review considers the interplay between lncRNAs and the biogenesis of CSCs. We also review function of lncRNAs in EMT in CSCs. In addition, we discuss the utility of lncRNAs as biomarkers of cancer progression, and their potential use as therapeutic targets for treatment of cancer.


Subject(s)
Biomarkers, Tumor/metabolism , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Neoplasms/pathology , Neoplastic Stem Cells/pathology , RNA, Long Noncoding/genetics , Animals , Biomarkers, Tumor/genetics , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism
11.
Pharmaceuticals (Basel) ; 13(8)2020 Aug 08.
Article in English | MEDLINE | ID: mdl-32784499

ABSTRACT

The novel SARS-CoV-2 virus has quickly spread worldwide, bringing the whole world as well as the economy to a standstill. As the world is struggling to minimize the transmission of this devastating disease, several strategies are being actively deployed to develop therapeutic interventions. Pharmaceutical companies and academic researchers are relentlessly working to investigate experimental, repurposed or FDA-approved drugs on a compassionate basis and novel biologics for SARS-CoV-2 prophylaxis and treatment. Presently, a tremendous surge of COVID-19 clinical trials are advancing through different stages. Among currently registered clinical efforts, ~86% are centered on testing small molecules or antibodies either alone or in combination with immunomodulators. The rest ~14% of clinical efforts are aimed at evaluating vaccines and convalescent plasma-based therapies to mitigate the disease's symptoms. This review provides a comprehensive overview of current therapeutic modalities being evaluated against SARS-CoV-2 virus in clinical trials.

12.
Exp Cell Res ; 395(2): 112216, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32768498

ABSTRACT

SETDB1 is a histone methyltransferase that converts H3K9me2 to H3K9me3. SETDB1 activity and H3K9me3 are crucial for the formation of obligately silenced heterochromatin such as that of centromeres. Here we show that a microRNA, miR-152-3p, is involved in the regulation of SETDB1 protein levels, but surprisingly, miR-152-3p plays a positive regulatory role for SETDB1 expression. Inhibition of miR-152-3p by anti-miR treatment resulted in a robust reduction in SETDB1 protein levels, though SETDB1 mRNA levels were unaffected. This was also accompanied by a blockade of the biochemical pathway proceeding from H3K9me2 to H3K9me3 as evidenced by quantitative nucleosome ELISA assays that showed that H3K9me2 accumulates in cells treated with an anti-miR that targets miR-152-3p. In addition, the action of a miR-152-3p mimic increased flux of the reaction leading to H3K9me3. We also performed site-directed mutagenesis of three predicted miR-152-3p target recognition sequences to yield three precise deletions. Deletion of one of the three sites recapitulated the positive regulatory aspect of the action of miR-152-3p upon SETDB1 expression in a luciferase reporter assay. Previous studies have shown that miR-152-3p negatively regulates DNMT1, the sole maintenance DNA methyltransferase which is required for levels of 5-methylcytosine levels within DNA. Our results shown that miR-152-3p positively regulates the production of H3K9me3 by regulating the production of SETDB1. Therefore, our findings provide strong evidence that miR-152-3p can serve as a toggle switch that regulates the balance between DNA methylation and H3K9 histone methylation in constitutive heterochromatin.


Subject(s)
DNA Methylation/physiology , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , MicroRNAs/genetics , Heterochromatin/genetics , Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/genetics , Humans , Protein Binding/genetics , Protein Binding/physiology , Protein Processing, Post-Translational/genetics
13.
Acta Pharm Sin B ; 9(4): 659-674, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31384528

ABSTRACT

Precision medicine is a rapidly-developing modality of medicine in human healthcare. Based on each patient׳s unique characteristics, more accurate dosages and drug selection can be made to achieve better therapeutic efficacy and less adverse reactions in precision medicine. A patient׳s individual parameters that affect drug transporter action can be used to develop a precision medicine guidance, due to the fact that therapeutic efficacy and adverse reactions of drugs can both be affected by expression and function of drug transporters on the cell membrane surface. The purpose of this review is to summarize unique characteristics of human breast cancer resistant protein (BCRP) and the genetic variability in the BCRP encoded gene ABCG2 in the development of precision medicine. Inter-individual variability of BCRP/ABCG2 can impact choices and outcomes of drug treatment for several diseases, including cancer chemotherapy. Several factors have been implicated in expression and function of BCRP, including genetic, epigenetic, physiologic, pathologic, and environmental factors. Understanding the roles of these factors in controlling expression and function of BCRP is critical for the development of precision medicine based on BCRP-mediated drug transport.

14.
Semin Cancer Biol ; 57: 36-44, 2019 08.
Article in English | MEDLINE | ID: mdl-30273656

ABSTRACT

Cellular identity is established and maintained by the interplay of cell type-specific transcription factors and epigenetic regulation of the genome. During development in vivo and differentiation in vitro, transitions from one cell type to the next are triggered by cell signaling events culminating in modifications of chromatin that render genes accessible or inaccessible to the transcriptional apparatus. In recent years it has become apparent that cellular identity is plastic, and technological reprogramming methods such as somatic cell nuclear transfer and induced pluripotency can yield reprogrammed cells that have been restored to a state of developmental potency. Long noncoding RNAs (lncRNAs) are untranslated functional RNA molecules that are intimately involved in the regulation of the chromatin of protein-coding genes. In fact, recent evidence shows that there are more lncRNA species in the cell than mRNA species and that most protein-coding genes are likely to be under epigenetic regulation mediated by lncRNAs. This review examines lncRNA function in reprogrammed pluripotent cells and cancer stem cells. Because cancer stem cells arise from normal cells, their biogenesis can be viewed as a reprogramming process that occurs in vivo, and parallels between artificial reprogramming and cancer stem cell biogenesis are discussed.


Subject(s)
Cellular Reprogramming , Disease Susceptibility , Neoplasms/etiology , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cellular Reprogramming/genetics , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Genomics/methods , Humans , Neoplasms/pathology , Neoplastic Stem Cells/pathology , RNA, Long Noncoding
15.
Curr Pharmacol Rep ; 4(3): 171-181, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30464886

ABSTRACT

PURPOSE OF THIS REVIEW: In order to combat the development of drug resistance, the clinical treatment of tuberculosis requires the combined use of several anti-tuberculosis (anti-TB) drugs, including isoniazid and rifampicin. Combinational treatment approaches are suggested by the World Health Organization (WHO) and are widely accepted throughout the world. Unfortunately, a major side effect of the treatment is the development of anti-tuberculosis drug-induced liver injury (AT-DILI). Many factors contribute to isoniazid- and rifampicin-mediated AT-DILI and genetic variations are among the most common factors. The purpose of this review is to provide information on genetic variations associated with isoniazid- and rifampicin-mediated AT-DILI. RECENT FINDINGS: The genetic variations associated with AT-DILI have been identified in the genomic regions within or near genes encoding proteins in the following pathways: drug metabolizing enzymes (NAT2, CYP2E1, and GSTs), accumulation of bile acids, lipids, and heme metabolites (CYP7A1, BSEP, UGTs, and PXR), immune adaptation (HLAs and TNF-α), and oxidant challenge (TXNRD1, SOD1, BACH1, and MAFK). SUMMARY: The information summarized in this review considers the genetic bases of risk factors contributing to AT-DILI and provides information that may help for future studies. Some of the implicated genetic variations can be used in the design of genetic tests and serve as biomarkers for the prediction of isoniazid- and rifampicin-mediated AT-DILI risk in personalized medicine.

16.
Curr Protoc Toxicol ; 75: 13.13.1-13.13.14, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29512128

ABSTRACT

Human birth defects are relatively common and can be caused by exposure to environmental teratogens or to pharmaceuticals with teratogenic activities. Human embryonic stem cells (hESCs), by virtue of their pluripotent nature, provide an excellent cellular platform for teratogen detection and risk assessment. This unit describes detailed protocols for the preparation and validation of highly pluripotent hESCs, the production of large quantities of aggregated multicellular spheroids composed of hESCs, and these spheroids' differentiation into embryoid bodies (EBs). EBs contain a variety of cells of endodermal, ectodermal, and mesodermal origin and can be subjected to compound exposure in vitro. Hence, they are useful for the detection of chemicals with teratogenic activities. Beyond describing protocols to assemble and culture EBs, this unit details methods to exploit the EB system for teratological assessment. In addition, strategies to distinguish compounds with bona fide teratogenic activity versus simple toxicity are discussed. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Embryoid Bodies/drug effects , Teratology/methods , Embryonic Stem Cells/drug effects , Humans , Pluripotent Stem Cells/drug effects , Toxicity Tests/methods
17.
Curr Opin Toxicol ; 11-12: 35-42, 2018.
Article in English | MEDLINE | ID: mdl-31602418

ABSTRACT

Among individuals diagnosed with epilepsy, as many as one in three develop resistance to antiepileptic drugs (AEDs) thus rendering their seizures refractory to treatment. Despite current antiepileptic drugs (AEDs) having a variety of modes of action, seizures in drug-resistant individuals often persist even after treatment with two or more drugs. The underlying cause of this broad resistance is currently under debate, but two dominant theories have emerged and have been widely studied. Here we discuss current literature investigating the "transporter theory", the idea that individuals present with drug resistance due to genetic variability in the ABCB1 gene encoding the efflux transporter multidrug resistance protein 1 (MDR1). Results of in vitro and in vivo studies suggest that variability in the expression of the MDR1 transporter may be closely tied to drug resistance. While there is much support for this hypothesis from molecular and mechanistic studies, population-based studies of ABCB1 polymorphisms are divergent in their conclusions, and there is need for additional investigations.

18.
Yale J Biol Med ; 90(1): 73-86, 2017 03.
Article in English | MEDLINE | ID: mdl-28356895

ABSTRACT

Long non-coding RNAs (lncRNAs) constitute the largest class of non-coding transcripts in the human genome. Results from next-generation sequencing and bioinformatics advances indicate that the human genome contains more non-coding RNA genes than protein-coding genes. Validated functions of lncRNAs suggest that they are master regulators of gene expression and often exert their influences via epigenetic mechanisms by modulating chromatin structure. Specific lncRNAs can regulate transcription in gene clusters. Since the functions of protein-coding genes in clusters are often tied to specific pathways, lncRNAs constitute attractive pharmacological targets. Here we review the current knowledge of lncRNA functions in human cells and their roles in disease processes. We also present forward-looking perspectives on how they might be manipulated pharmacologically for the treatment of a variety of human diseases, in which regulation of gene expression by epigenetic mechanisms plays a major role.


Subject(s)
Epigenesis, Genetic/genetics , RNA, Long Noncoding/genetics , Animals , Computational Biology , Gene Expression Regulation/genetics , Humans
19.
PLoS One ; 12(2): e0171101, 2017.
Article in English | MEDLINE | ID: mdl-28182681

ABSTRACT

Teratogens are compounds that can induce birth defects upon exposure of the developing fetus. To date, most teratogen studies utilize pregnant rodents to determine compound teratogenicity in vivo. However, this is a low throughput approach that cannot easily meet the need for comprehensive high-volume teratogen assessment, a goal of the US Environmental Protection Agency. In addition, rodent and human development differ substantially, and therefore the use of assays using relevant human cells has utility. For these reasons, interest has recently focused on the use of human embryonic stem cells for teratogen assessment. Here we present a highly standardized and quantitative system for the detection and analysis of teratogens that utilizes well-characterized and purified highly pluripotent stem cells. We have devised strategies to mass-produce thousands of uniformly sized spheroids of human ESCs (hESCs) that can be caused to undergo synchronous differentiation to yield embryoid bodies (EBs) in the presence and absence of suspected teratogens. The system uses all human cells and rigorously controlled and standardized EB culture conditions. Furthermore, the approach has been made quantitative by using high-content imaging approaches. Our system offers distinct advantages over earlier EB systems that rely heavily on the use on mouse ESCs and EB aggregates of stochastic sizes. Together, our results show that thousands of suspected teratogens could be assessed using human EB-based approaches.


Subject(s)
Embryonic Stem Cells/drug effects , Teratogens/toxicity , Toxicity Tests/methods , Humans , Spheroids, Cellular , Toxicity Tests/standards
20.
Neuron ; 84(5): 997-1008, 2014 Dec 03.
Article in English | MEDLINE | ID: mdl-25467983

ABSTRACT

Three-dimensional chromosomal conformations regulate transcription by moving enhancers and regulatory elements into spatial proximity with target genes. Here we describe activity-regulated long-range loopings bypassing up to 0.5 Mb of linear genome to modulate NMDA glutamate receptor GRIN2B expression in human and mouse prefrontal cortex. Distal intronic and 3' intergenic loop formations competed with repressor elements to access promoter-proximal sequences, and facilitated expression via a "cargo" of AP-1 and NRF-1 transcription factors and TALE-based transcriptional activators. Neuronal deletion or overexpression of Kmt2a/Mll1 H3K4- and Kmt1e/Setdb1 H3K9-methyltransferase was associated with higher-order chromatin changes at distal regulatory Grin2b sequences and impairments in working memory. Genetic polymorphisms and isogenic deletions of loop-bound sequences conferred liability for cognitive performance and decreased GRIN2B expression. Dynamic regulation of chromosomal conformations emerges as a novel layer for transcriptional mechanisms impacting neuronal signaling and cognition.


Subject(s)
Chromatin/metabolism , Cognition/physiology , Gene Expression Regulation/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Aged , Aged, 80 and over , Animals , Animals, Newborn , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/ultrastructure , Chromatin/drug effects , Cognition/drug effects , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Neurons/metabolism , Neurons/ultrastructure , Polymorphism, Single Nucleotide/genetics , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/genetics , Schizophrenia/drug therapy , Schizophrenia/genetics , Schizophrenia/pathology , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...