Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34450740

ABSTRACT

The use of anti-forensic techniques is a very common practice that stealthy adversaries may deploy to minimise their traces and make the investigation of an incident harder by evading detection and attribution. In this paper, we study the interaction between a cyber forensic Investigator and a strategic Attacker using a game-theoretic framework. This is based on a Bayesian game of incomplete information played on a multi-host cyber forensics investigation graph of actions traversed by both players. The edges of the graph represent players' actions across different hosts in a network. In alignment with the concept of Bayesian games, we define two Attacker types to represent their ability of deploying anti-forensic techniques to conceal their activities. In this way, our model allows the Investigator to identify the optimal investigating policy taking into consideration the cost and impact of the available actions, while coping with the uncertainty of the Attacker's type and strategic decisions. To evaluate our model, we construct a realistic case study based on threat reports and data extracted from the MITRE ATT&CK STIX repository, Common Vulnerability Scoring System (CVSS), and interviews with cyber-security practitioners. We use the case study to compare the performance of the proposed method against two other investigative methods and three different types of Attackers.


Subject(s)
Computer Security , Bayes Theorem , Uncertainty
2.
Entropy (Basel) ; 20(5)2018 Apr 25.
Article in English | MEDLINE | ID: mdl-33265403

ABSTRACT

We consider a formal model of password security, in which two actors engage in a competition of optimal password choice against potential attacks. The proposed model is a multi-objective two-person game. Player 1 seeks an optimal password choice policy, optimizing matters of memorability of the password (measured by Shannon entropy), opposed to the difficulty for player 2 of guessing it (measured by min-entropy), and the cognitive efforts of player 1 tied to changing the password (measured by relative entropy, i.e., Kullback-Leibler divergence). The model and contribution are thus twofold: (i) it applies multi-objective game theory to the password security problem; and (ii) it introduces different concepts of entropy to measure the quality of a password choice process under different angles (and not a given password itself, since this cannot be quality-assessed in terms of entropy). We illustrate our approach with an example from everyday life, namely we analyze the password choices of employees.

3.
PLoS One ; 12(1): e0168675, 2017.
Article in English | MEDLINE | ID: mdl-28045922

ABSTRACT

Advanced persistent threats (APT) combine a variety of different attack forms ranging from social engineering to technical exploits. The diversity and usual stealthiness of APT turns them into a central problem of contemporary practical system security, since information on attacks, the current system status or the attacker's incentives is often vague, uncertain and in many cases even unavailable. Game theory is a natural approach to model the conflict between the attacker and the defender, and this work investigates a generalized class of matrix games as a risk mitigation tool for an advanced persistent threat (APT) defense. Unlike standard game and decision theory, our model is tailored to capture and handle the full uncertainty that is immanent to APTs, such as disagreement among qualitative expert risk assessments, unknown adversarial incentives and uncertainty about the current system state (in terms of how deeply the attacker may have penetrated into the system's protective shells already). Practically, game-theoretic APT models can be derived straightforwardly from topological vulnerability analysis, together with risk assessments as they are done in common risk management standards like the ISO 31000 family. Theoretically, these models come with different properties than classical game theoretic models, whose technical solution presented in this work may be of independent interest.


Subject(s)
Computer Security , Computer Systems , Game Theory , Risk Management , Software , Decision Support Techniques , Humans , Models, Theoretical , Probability , Risk Assessment , Stochastic Processes , Uncertainty
4.
PLoS One ; 11(12): e0168583, 2016.
Article in English | MEDLINE | ID: mdl-28030572

ABSTRACT

Decisions are often based on imprecise, uncertain or vague information. Likewise, the consequences of an action are often equally unpredictable, thus putting the decision maker into a twofold jeopardy. Assuming that the effects of an action can be modeled by a random variable, then the decision problem boils down to comparing different effects (random variables) by comparing their distribution functions. Although the full space of probability distributions cannot be ordered, a properly restricted subset of distributions can be totally ordered in a practically meaningful way. We call these loss-distributions, since they provide a substitute for the concept of loss-functions in decision theory. This article introduces the theory behind the necessary restrictions and the hereby constructible total ordering on random loss variables, which enables decisions under uncertainty of consequences. Using data obtained from simulations, we demonstrate the practical applicability of our approach.


Subject(s)
Computer Security , Decision Making , Decision Theory , Models, Theoretical , Uncertainty , Water/metabolism , Humans , Judgment , Probability , Risk Assessment , Rivers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...