Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Radiol ; 54(1): 82-95, 2024 01.
Article in English | MEDLINE | ID: mdl-37953411

ABSTRACT

BACKGROUND: Skeletal dysplasias collectively affect a large number of patients worldwide. Most of these disorders cause growth anomalies. Hence, evaluating skeletal maturity via the determination of bone age (BA) is a useful tool. Moreover, consecutive BA measurements are crucial for monitoring the growth of patients with such disorders, especially for timing hormonal treatment or orthopedic interventions. However, manual BA assessment is time-consuming and suffers from high intra- and inter-rater variability. This is further exacerbated by genetic disorders causing severe skeletal malformations. While numerous approaches to automate BA assessment have been proposed, few are validated for BA assessment on children with skeletal dysplasias. OBJECTIVE: We present Deeplasia, an open-source prior-free deep-learning approach designed for BA assessment specifically validated on patients with skeletal dysplasias. MATERIALS AND METHODS: We trained multiple convolutional neural network models under various conditions and selected three to build a precise model ensemble. We utilized the public BA dataset from the Radiological Society of North America (RSNA) consisting of training, validation, and test subsets containing 12,611, 1,425, and 200 hand and wrist radiographs, respectively. For testing the performance of our model ensemble on dysplastic hands, we retrospectively collected 568 radiographs from 189 patients with molecularly confirmed diagnoses of seven different genetic bone disorders including achondroplasia and hypochondroplasia. A subset of the dysplastic cohort (149 images) was used to estimate the test-retest precision of our model ensemble on longitudinal data. RESULTS: The mean absolute difference of Deeplasia for the RSNA test set (based on the average of six different reference ratings) and dysplastic set (based on the average of two different reference ratings) were 3.87 and 5.84 months, respectively. The test-retest precision of Deeplasia on longitudinal data (2.74 months) is estimated to be similar to a human expert. CONCLUSION: We demonstrated that Deeplasia is competent in assessing the age and monitoring the development of both normal and dysplastic bones.


Subject(s)
Achondroplasia , Deep Learning , Osteochondrodysplasias , Child , Humans , Retrospective Studies , Radiography , Age Determination by Skeleton/methods
2.
Eur Phys J E Soft Matter ; 44(2): 18, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33683488

ABSTRACT

Cilia are hair-like membrane protrusions that emanate from the surface of most vertebrate cells and are classified into motile and primary cilia. Motile cilia move fluid flow or propel cells, while also fulfill sensory functions. Primary cilia are immotile and act as a cellular antenna, translating environmental cues into cellular responses. Ciliary dysfunction leads to severe diseases, commonly termed ciliopathies. The molecular details underlying ciliopathies and ciliary function are, however, not well understood. Since cilia are small subcellular compartments, imaging-based approaches have been used to study them. However, tools to comprehensively analyze images are lacking. Automatic analysis approaches require commercial software and are limited to 2D analysis and only a few parameters. The widely used manual analysis approaches are time consuming, user-biased, and difficult to compare. Here, we present CiliaQ, a package of open-source, freely available, and easy-to-use ImageJ plugins. CiliaQ allows high-throughput analysis of 2D and 3D, static or time-lapse images from fluorescence microscopy of cilia in cell culture or tissues, and outputs a comprehensive list of parameters for ciliary morphology, length, bending, orientation, and fluorescence intensity, making it broadly applicable. We envision CiliaQ as a resource and platform for reproducible and comprehensive analysis of ciliary function in health and disease.


Subject(s)
Cilia/metabolism , Optical Imaging/methods , Proteins/chemistry , Animals , Cell Line , Cell Membrane/ultrastructure , Cilia/ultrastructure , Humans , Mice , Microscopy, Fluorescence , Software
3.
J Mol Cell Cardiol ; 156: 45-56, 2021 07.
Article in English | MEDLINE | ID: mdl-33773996

ABSTRACT

CRELD1 (Cysteine-Rich with EGF-Like Domains 1) is a risk gene for non-syndromic atrioventricular septal defects in human patients. In a mouse model, Creld1 has been shown to be essential for heart development, particularly in septum and valve formation. However, due to the embryonic lethality of global Creld1 knockout (KO) mice, its cell type-specific function during peri- and postnatal stages remains unknown. Here, we generated conditional Creld1 KO mice lacking Creld1 either in the endocardium (KOTie2) or the myocardium (KOMyHC). Using a combination of cardiac phenotyping, histology, immunohistochemistry, RNA-sequencing, and flow cytometry, we demonstrate that Creld1 function in the endocardium is dispensable for heart development. Lack of myocardial Creld1 causes extracellular matrix remodeling and trabeculation defects by modulation of the Notch1 signaling pathway. Hence, KOMyHC mice die early postnatally due to myocardial hypoplasia. Our results reveal that Creld1 not only controls the formation of septa and valves at an early stage during heart development, but also cardiac maturation and function at a later stage. These findings underline the central role of Creld1 in mammalian heart development and function.


Subject(s)
Cell Adhesion Molecules/genetics , Extracellular Matrix Proteins/genetics , Gene Expression Regulation, Developmental , Heart/embryology , Heart/physiology , Myocardium/metabolism , Organogenesis/genetics , Animals , Biomarkers , Cell Adhesion Molecules/metabolism , Extracellular Matrix Proteins/metabolism , Flow Cytometry , Gene Expression Profiling , Humans , Mice, Knockout , Single-Cell Analysis
4.
Cells ; 8(7)2019 06 27.
Article in English | MEDLINE | ID: mdl-31252584

ABSTRACT

Inside the female genital tract, mammalian sperm undergo a maturation process called capacitation, which primes the sperm to navigate across the oviduct and fertilize the egg. Sperm capacitation and motility are controlled by 3',5'-cyclic adenosine monophosphate (cAMP). Here, we show that optogenetics, the control of cellular signaling by genetically encoded light-activated proteins, allows to manipulate cAMP dynamics in sperm flagella and, thereby, sperm capacitation and motility by light. To this end, we used sperm that express the light-activated phosphodiesterase LAPD or the photo-activated adenylate cyclase bPAC. The control of cAMP by LAPD or bPAC combined with pharmacological interventions provides spatiotemporal precision and allows to probe the physiological function of cAMP compartmentalization in mammalian sperm.


Subject(s)
Cyclic AMP/metabolism , Optogenetics/methods , Sperm Capacitation/physiology , Sperm Motility/physiology , Sperm Tail/metabolism , Animals , Enzyme Assays , Light , Male , Mice , Mice, Transgenic , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/radiation effects , Spatio-Temporal Analysis
5.
Cells ; 8(1)2018 12 26.
Article in English | MEDLINE | ID: mdl-30587820

ABSTRACT

Motile cilia, also called flagella, are found across a broad range of species; some cilia propel prokaryotes and eukaryotic cells like sperm, while cilia on epithelial surfaces create complex fluid patterns e.g., in the brain or lung. For sperm, the picture has emerged that the flagellum is not only a motor but also a sensor that detects stimuli from the environment, computing the beat pattern according to the sensory input. Thereby, the flagellum navigates sperm through the complex environment in the female genital tract. However, we know very little about how environmental signals change the flagellar beat and, thereby, the swimming behavior of sperm. It has been proposed that distinct signaling domains in the flagellum control the flagellar beat. However, a detailed analysis has been mainly hampered by the fact that current comprehensive analysis approaches rely on complex microscopy and analysis systems. Thus, knowledge on sperm signaling regulating the flagellar beat is based on custom quantification approaches that are limited to only a few aspects of the beat pattern, do not resolve the kinetics of the entire flagellum, rely on manual, qualitative descriptions, and are only a little comparable among each other. Here, we present SpermQ, a ready-to-use and comprehensive analysis software to quantify sperm motility. SpermQ provides a detailed quantification of the flagellar beat based on common time-lapse images acquired by dark-field or epi-fluorescence microscopy, making SpermQ widely applicable. We envision SpermQ becoming a standard tool in flagellar and motile cilia research that allows to readily link studies on individual signaling components in sperm and distinct flagellar beat patterns.


Subject(s)
Cilia , Microscopy/methods , Software , Sperm Motility/physiology , Sperm Tail , Adult , Animals , Cilia/physiology , Cilia/ultrastructure , Humans , Male , Mice , Mice, Inbred C57BL , Models, Biological , Periodicity , Sperm Tail/physiology , Sperm Tail/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...