Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38771504

ABSTRACT

INTRODUCTION: Curcumin is a polyphenol with a variety of pharmacological actions. Despite its therapeutic effects and well-known safety profile, the utility of curcumin has been limited due to its deprived physical, chemical, and pharmacokinetic profile resulting from limited solubility, durability, prompt deterioration and pitiable systemic availability. Employment of an amalgamated framework integrating the potential advantages of a nanoscaffold alongside the beneficial traits of inhalational drug delivery system beautifully bringing down the restricting attributes of intended curative interventions and further assures its clinical success. AREAS COVERED: Current review discussed different application of inhalable nanocurcumin in different medical conditions. Lung diseases have been the prime field in which inhalable nanocurcumin had resulted in significant beneficial effects. Apart from this several lung protective potentials of the inhaled nanocurcumin have been discussed against severe pulmonary disorders such as pulmonary fibrosis, radiation pneumonitis and IUGR induced bronchopulmonary dysplasia. Also, application of the disclosed intervention in the clinical management of COVID-19 and Alzheimer's Disease has been discussed. EXPERT OPINION: In this portion, the potential of inhalable nanocurcumin in addressing various medical conditions along with ongoing advancements in nanoencapsulation techniques and the existing challenges in transitioning from pre-clinical models to clinical practice has been summarized.

2.
Sci Rep ; 14(1): 5792, 2024 03 09.
Article in English | MEDLINE | ID: mdl-38461218

ABSTRACT

Cisplatin is a chemotherapy drug widely used in cancer treatment. Alongside its clinical benefits, however, it may inflict intolerable toxicity and other adverse effects on healthy tissues. Due to the limitation of administering a high dose of cisplatin as well as cancer drug resistance, it is necessary to utilize new methods optimizing treatment modalities through both higher therapeutic efficacy and reduced administered doses of radiation and drugs. In this study, sensitive (A2780) and resistant (A2780CP) ovarian carcinoma cells underwent treatment with cisplatin + static magnetic field (SMF). First, the levels of genotoxicity after treatment were evaluated by Comet assay. Then, cell cycle analysis and apoptosis assay were conducted by a flow cytometer. Lastly, the expression levels of genes involved in apoptosis and cellular drug uptake were investigated by PCR. After treating different groups of cells for 24, 48, and 96 h, the co-treatment of SMF and cisplatin as a combination managed to increase the amount of DNA damage in both sensitive and resistant cell lines. A considerable increase in mortality of cells was also observed mostly in the form of apoptosis, which was caused by inhibition of the cell cycle. The combination also increased the expression levels of apoptotic genes, namely P53 and P21; however, it did not have much effect on the expression levels of BCL2. Besides, the levels of CTR1 gene expression increased significantly in the groups receiving the aforementioned combination. Our study suggests that the combination of cisplatin + SMF might have clinical potential which needs further investigations through future studies.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Humans , Female , Cisplatin/pharmacology , Cisplatin/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Ovarian Neoplasms/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Apoptosis , DNA Damage , Magnetic Fields
3.
Lasers Med Sci ; 39(1): 28, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38216721

ABSTRACT

The increasing number of cancer patients has cast attention on developing new anti-cancer modalities. Photodynamic therapy is a safe anti-cancer approach, which encompasses (1) local administration of a photosensitizer and (2) light irradiation. Zinc oxide (ZnO) quantum dots (QDs) are photosensitizers that can be utilized for this purpose. In the present study, to better appreciate the likely more efficient cytotoxic effect of the combination of ZnO QDs and the visible 470-nm blue light in comparison to the QDs alone, several assays were to be conducted upon breast cancer MDA-MB 231 cells. MTT assay showed that in certain groups the combination displayed higher cytotoxic effects compared to those following QD treatment alone. LDH leakage and lipid peroxidation rates by the combination were significantly higher than treatment with either the blue laser or QDs. Although the combination managed to meaningfully reduce the number of colonies and CAT activity compared to QD treatment, there were no palpable differences between them. Lastly, the combination was able to increase the apoptotic genes, including BAX, TP53, caspase 3, and caspase 9 compared to QD, while, in the case of Bcl-2, an anti-apoptotic gene, none of the groups managed to make any tangible differences on its expression levels. Our findings propose that there may be synergistic effects between the blue laser and QD that can possibly be adopted in anti-cancer therapy in the future. However, further investigations regarding this matter are of the essence.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Photochemotherapy , Quantum Dots , Zinc Oxide , Humans , Female , Zinc Oxide/pharmacology , Apoptosis , Photosensitizing Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Antineoplastic Agents/pharmacology , Lasers
4.
Int J Environ Health Res ; 34(3): 1443-1452, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37266965

ABSTRACT

This meta-analysis evaluates the association between atrazine (ATR) exposure and small for gestational age (SGA), preterm birth (PTB), and low birth weight (LBW). A comprehensive search was done on academic databases (e.g. PubMed, Scopus, Embase, and Google Scholar) to achieve all pertinent studies up to May 2023. A pooled odd ratio (OR) and corresponding 95% confidence interval (CI) were applied to evaluate this correlation. As a result, five eligible studies met the inclusion criteria and were included in our study, and the result of the present meta-analysis showed that ATR exposure increased the risk of SGA (OR = 1.11; 95% CI = 1.03-1.20 for highest versus lowest category of ATR), PTB (OR = 1.16; 95% CI = 1.03-1.30), and LBW (OR = 1.26; 95% CI = 1.10-1.44). This meta-analysis suggests that ATR in drinking water may be a risk factor for SGA, PTB, and LBW.


Subject(s)
Atrazine , Drinking Water , Premature Birth , Infant, Newborn , Female , Humans , Atrazine/toxicity , Atrazine/analysis , Premature Birth/chemically induced , Premature Birth/epidemiology , Infant, Low Birth Weight , Infant, Small for Gestational Age
5.
Cancer Invest ; 41(7): 656-671, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37462514

ABSTRACT

This study comparatively evaluated the possible effects of recurrent and non-recurrent patient-derived Cancer-Associated Fibroblasts (CAFs-R and -NR) on the bladder cancer cell line, EJ138. Both groups of CAFs increased cisplatin resistance and altered cell cycle distribution alongside induced resistance to apoptosis. Later, the scratch assay confirmed the cell migration-inducing effects of CAFs on cells. Nonetheless, only CAFs-R managed to increase sphere-formation and clonogenic levels in EJ138 cells, which were later validated by upregulating pluripotency transcription factors. Besides, CAFs-R also affected the expression levels of some of the EMT markers. Our study suggests that CAFs-R had stronger pro-tumorigenic effects on EJ138 cells.


Subject(s)
Cancer-Associated Fibroblasts , Urinary Bladder Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Epithelial-Mesenchymal Transition , Cell Line, Tumor , Cell Proliferation , Urinary Bladder Neoplasms/metabolism , Cell Movement , Drug Resistance, Neoplasm , Fibroblasts/metabolism
6.
Acta Histochem ; 125(6): 152058, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37336070

ABSTRACT

Glioblastoma multiforme (GBM) is one of the most aggressive brain and spinal cord tumors. Despite the significant development in application of antitumor drugs, no significant increases have been observed in the survival rates of patients with GBM, as GBM cells acquire resistance to conventional anticancer therapeutic agents. Multiple studies have revealed that PI3K/Akt, MAPK, Nanog, STAT 3, and Wnt signaling pathways are involved in GBM progression and invasion. Besides, biological processes such as anti-apoptosis, autophagy, angiogenesis, and stemness promote GBM malignancy. Resveratrol (RESV) is a non-flavonoid polyphenol with high antitumor activity, the potential of which, regulating signaling pathways involved in cancer malignancy, have been demonstrated by many studies. Herein, we present the potential of RESV in both single and combination therapy- targeting various signaling pathways- which induce apoptotic cell death, re-sensitize cancer cells to radiotherapy, and induce chemo-sensitizing effects to eventually inhibit GBM progression.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/metabolism , Resveratrol/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor
7.
Curr Pharm Des ; 29(22): 1713-1728, 2023.
Article in English | MEDLINE | ID: mdl-37185325

ABSTRACT

Cancer has remained to be one of the major challenges in medicine and regarded as the second leading cause of death worldwide. Different types of cancer may resist anti-cancer drugs following certain mutations such as those in tumor suppressor genes, exhaustion of the immune system, and overexpression of drug resistance mediators, which increase the required concentration of anticancer drugs so as to overcome drug resistance. Moreover, treatment with a high dose of such drugs is highly associated with severe normal tissue toxicity. Administration of low-toxic agents has long been an intriguing idea to enhance tumor suppression. Naturally occurring agents e.g., herb-derived molecules have shown a dual effect on normal and malignant cells. On the one hand, these agents may induce cell death in malignant cells, while on the other hand reduce normal cell toxicity. Nobiletin, one of the well-known polymethoxyflavones (PMFs), has reportedly shown various beneficial effects on the suppression of cancer and the protection of normal cells against different toxic agents. Our review aims to explain the main mechanisms underlying nobiletin as an inhibitor of cancer. We have reviewed the mechanisms of cancer cell death caused by nobiletin, such as stimulation of reactive oxygen species (ROS), modulation of immune evasion mechanisms, targeting tumor suppressor genes, and modulation of epigenetic modulators, among others; the inhibitory mechanisms of nobiletin affecting tumor resistance properties such as modulation of hypoxia, multidrug resistance, angiogenesis, epithelial-mesenchymal transition (EMT) have been fully investigated. Also, the inhibition of anti-apoptotic and invasive mechanisms induced by nobiletin will later be discussed. In the end, protective mechanisms of nobiletin on normal cells/tissue, clinical trial results, and future perspectives are reviewed.


Subject(s)
Antineoplastic Agents , Flavones , Neoplasms , Humans , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Flavones/pharmacology , Flavones/therapeutic use , Antioxidants/pharmacology , Neoplasms/drug therapy
8.
Clin Exp Pharmacol Physiol ; 50(5): 353-368, 2023 05.
Article in English | MEDLINE | ID: mdl-36786378

ABSTRACT

Immune reactions are involved in both tumour and normal tissue in response to therapy. Elevated secretion of certain chemokines, exosomes and cytokines triggers inflammation, pain, fibrosis and ulceration among other normal tissue side effects. On the other hand, secretion of tumour-promoting molecules suppresses activity of anticancer immune cells and facilitates the proliferation of malignant cells. Novel anticancer drugs such as immune checkpoint inhibitors (ICIs) boost anticancer immunity via inducing the proliferation of anticancer cells such as natural killer (NK) cells and CD8+ T lymphocytes. Certain chemotherapy drugs and radiotherapy may induce anticancer immunity in the tumour, however, both have severe side effects for normal tissues through stimulation of several immune responses. Thus, administration of natural products with low side effects may be a promising approach to modulate the immune system in both tumour and normal organs. Resveratrol is a well-known phenol with diverse effects on normal tissues and tumours. To date, a large number of experiments have confirmed the potential of resveratrol as an anticancer adjuvant. This review focuses on ensuing stimulation or suppression of immune responses in both tumour and normal tissue after radiotherapy or anticancer drugs. Later on, the immunoregulatory effects of resveratrol in both tumour and normal tissue following exposure to anticancer agents will be discussed.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Resveratrol/pharmacology , Killer Cells, Natural , Immunity
9.
Mini Rev Med Chem ; 23(14): 1461-1478, 2023.
Article in English | MEDLINE | ID: mdl-36658710

ABSTRACT

Induction of cell death and inhibition of cell proliferation in cancer have been set as some of the main goals in anti-tumor therapy. Cancer cell resistance leads to less efficient cancer therapy, and consequently, to higher doses of anticancer drugs, which may eventually increase the risk of serious side effects in normal tissues. Apigenin, a nature-derived and herbal agent, which has shown anticancer properties in several types of cancer, can induce cell death directly and/or amplify the induction of cell death through other anti-tumor modalities. Although the main mechanism of apigenin in order to induce cell death is apoptosis, other cell death pathways, such as autophagic cell death, senescence, anoikis, necroptosis, and ferroptosis, have been reported to be induced by apigenin. It seems that apigenin enhances apoptosis by inducing anticancer immunity and tumor suppressor genes, like p53 and PTEN, and also by inhibiting STAT3 and NF-κB signaling pathways. Furthermore, it may induce autophagic cell death and ferroptosis by inducing endogenous ROS generation. Stimulation of ROS production and tumor suppressor genes, as well as downregulation of drug-resistance mediators, may induce other mechanisms of cell death, such as senescence, anoikis, and necroptosis. It seems that the induction of each type of cell death is highly dependent on the type of cancer. These modulatory actions of apigenin have been shown to enhance anticancer effects by other agents, such as ionizing radiation and chemotherapy drugs. This review explains how cancer cell death may be induced by apigenin at the cellular and molecular levels.


Subject(s)
Apigenin , Neoplasms , Apigenin/pharmacology , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Cell Death , Apoptosis , Neoplasms/drug therapy
10.
Clin Exp Pharmacol Physiol ; 50(1): 3-18, 2023 01.
Article in English | MEDLINE | ID: mdl-36111951

ABSTRACT

The incidence of cancer has been growing worldwide. Better survival rates following the administration of novel drugs and new combination therapies may concomitantly cause concern regarding the long-term adverse effects of cancer therapy, for example, second primary malignancies. Moreover, overcoming tumour resistance to anticancer agents has been long considered as a critical challenge in cancer research. Some low toxic adjuvants such as herb-derived molecules may be of interest for chemoprevention and overcoming the resistance of malignancies to cancer therapy. Apigenin is a plant-derived molecule with attractive properties for chemoprevention, for instance, promising anti-tumour effects, which may make it a desirable adjuvant to reduce genomic instability and the risks of second malignancies among normal tissues. Moreover, it may improve the efficiency of anticancer modalities. This paper aims to review various effects of apigenin in both normal tissues and malignancies. In addition, we explain how apigenin may have the ability to protect usual cells against the genotoxic repercussions following radiotherapy and chemotherapy. Furthermore, the inhibitory effects of apigenin on tumours will be discussed.


Subject(s)
Apigenin , Neoplasms , Humans , Apigenin/pharmacology , Apigenin/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/prevention & control
11.
Int Immunopharmacol ; 108: 108890, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35623297

ABSTRACT

Immune system interactions within the tumour have a key role in the resistance or sensitization of cancer cells to anti-cancer agents. On the other hand, activation of the immune system in normal tissues following chemotherapy or radiotherapy is associated with acute and late effects such as inflammation and fibrosis. Some immune responses can reduce the efficiency of anti-cancer therapy and also promote normal tissue toxicity. Modulation of immune responses can boost the efficiency of anti-tumour therapy and alleviate normal tissue toxicity. Melatonin is a natural body agent that has shown promising results for modulating tumour response to therapy and also alleviating normal tissue toxicity. This review tries to focus on the immunomodulatory actions of melatonin in both tumour and normal tissues. We will explain how anti-cancer drugs may cause toxicity for normal tissues and how tumours can adapt themselves to ionizing radiation and anti-cancer drugs. Then, cellular and molecular mechanisms of immunoregulatory effects of melatonin alone or combined with other anti-cancer agents will be discussed.


Subject(s)
Antineoplastic Agents , Melatonin , Neoplasms , Antineoplastic Agents/therapeutic use , Antioxidants/therapeutic use , Humans , Immune System , Melatonin/pharmacology , Melatonin/therapeutic use , Neoplasms/drug therapy , Neoplasms/radiotherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...