Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Phylogenet Evol ; 62(3): 856-73, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22182993

ABSTRACT

Typhlops vermicularis is the only extant scolecophidian representative occurring in Europe. Its main distribution area, the eastern Mediterranean, has a complicated geological and climatic history that has left an imprint on the phylogenies and biogeography of many taxa, especially amphibians and reptiles. Since reptiles are sensitive indicators of palaeogeographical and palaeoclimatic events, we investigated the intraspecific genealogy of T. vermicularis in a phylogeographical framework. A total of 130 specimens were analyzed, while the use of formalin and ethanol as preservatives called for a special treatment of the samples. Partial sequences of two mitochondrial (12S and ND2) and one nuclear (PRLR) marker were targeted and the results of the phylogenetic analyses (NJ, ML and BI) and the parsimony-network revealed the existence of 10 evolutionary significant units within this species. In combination with the results of the dispersal-vicariance analysis, we may conclude that the Eurasian blindsnake has encountered a sequence of extinction events, followed by secondary expansion from refugia. Estimation of divergence times showed that severe climatic changes between significantly wetter and drier conditions in the Late Neogene have played a key role on the evolutionary and biogeographical history of T. vermicularis. Additionally, both markers (mtDNA and nDNA) distinguished a largely-differentiated evolutionary lineage (Jordan and south Syria), which could even be reckoned as a full species. Our study reveals the existence of cryptic evolutionary lineages within T. vermicularis, which calls for further attention both on the protection of intraspecific varieties and the respective geographic areas that hold them.


Subject(s)
Snakes/genetics , Animals , DNA, Mitochondrial , Evolution, Molecular , Genetic Variation , Molecular Sequence Data , NADH Dehydrogenase/genetics , Phylogeny , Phylogeography , RNA, Ribosomal , Snakes/classification
2.
Mol Phylogenet Evol ; 49(3): 795-805, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18804543

ABSTRACT

The snake-eyed lizards of the genus Ophisops (Lacertidae) have been through a series of taxonomical revisions, but still their phylogenetic relationships remain uncertain. In the present study we estimate the phylogeographic structure of O. elegans across its distributional range and we evaluate the relationships between O. elegans and the sympatric, in North Africa, species O. occidentalis, using partial mtDNA sequences (16S rRNA, COI, and cyt b). All phylogenetic analyses produced topologically identical trees where extant populations of O. elegans and O. occidentalis were found polyphyletic. Taking into account all the potential causes of polyphyly (introgressive hybridization, incomplete lineage sorting, and imperfect taxonomy) we suggest the inaccurate taxonomy as the most likely explanation for the observed pattern. Our results stress the need for re-evaluation of the current taxonomical status of these species and their subspecies. Furthermore, our biogeographic analyses and the estimated time of divergences suggest a late Miocene diversification within these species, where the present distribution of O. elegans and O. occidentalis was the result of several dispersal and vicariant events, which are associated with climatic oscillations (the late Miocene aridification of Asia and northern Africa) and paleogeographic barriers of late Miocene and Pliocene period.


Subject(s)
DNA, Mitochondrial/genetics , Evolution, Molecular , Lizards/genetics , Phylogeny , Animals , Bayes Theorem , Cytochromes b/genetics , Electron Transport Complex IV/genetics , Genes, Mitochondrial , Genes, rRNA , Genetic Speciation , Geography , Likelihood Functions , Lizards/classification , Mitochondria/genetics , Models, Genetic , RNA, Ribosomal, 16S , Sequence Alignment , Sequence Analysis, DNA , Statistics, Nonparametric
3.
Syst Biol ; 49(2): 233-56, 2000 Jun.
Article in English | MEDLINE | ID: mdl-12118407

ABSTRACT

A phylogenetic tree for acrodont lizards (Chamaeleonidae and Agamidae) is established based on 1434 bases (1041 informative) of aligned DNA positions from a 1685-1778 base pair region of the mitochondrial genome. Sequences from three protein-coding genes (ND1, ND2, and COI) are combined with sequences from eight intervening tRNA genes for samples of 70 acrodont taxa and two outgroups. Parsimony analysis of nucleotide sequences identifies eight major clades in the Acrodonta. Most agamid lizards are placed into three distinct clades. One clade is composed of all taxa occurring in Australia and New Guinea; Physignathus cocincinus from Southeast Asia is the sister taxon to the Australia-New Guinea clade. A second clade is composed of taxa occurring from Tibet and the Indian Subcontinent east through South and East Asia. A third clade is composed of taxa occurring from Africa east through Arabia and West Asia to Tibet and the Indian Subcontinent. These three clades contain all agamid lizards except Uromastyx, Leiolepis, and Hydrosaurus, which represent three additional clades of the Agamidae. The Chamaeleonidae forms another clade weakly supported as the sister taxon to the Agamidae. All eight clades of the Acrodonta contain members occurring on land masses derived from Gondwanaland. A hypothesis of agamid lizards rafting with Gondwanan plates is examined statistically. This hypothesis suggests that the African/West Asian clade is of African or Indian origin, and the South Asian clade is either of Indian or Southeast Asian origin. The shortest tree suggests a possible African origin for the former and an Indian origin for the latter, but this result is not statistically robust. The Australia-New Guinea clade rafted with the Australia-New Guinea plate and forms the sister group to a Southeast Asian taxon that occurs on plates that broke from northern Australia-New Guinea. Other acrodont taxa are inferred to be associated with the plates of Afro-Arabia and Madagascar (Chameleonidae), India (Uromastyx), or southeast Asia (Hydrosaurus and Leiolepis). Introduction of different biotic elements to Asia by way of separate Gondwanan plates may be a major theme of Asian biogeography. Three historical events may be responsible for the sharp faunal barrier between Southeast Asia and Australia-New Guinea, known as Wallace's line: (1) primary vicariance caused by plate separations; (2) secondary contact of Southeast Asian plates with Eurasia, leading to dispersal from Eurasia into Southeast Asia, and (3) dispersal of the Indian fauna (after collision of that subcontinent) to Southeast Asia. Acrodont lizards show the first and third of these biogeographic patterns and anguid lizards exhibit the second pattern. Modern faunal diversity may be influenced primarily by historical events such as tectonic collisions and land bridge connections, which are expected to promote episodic turnover of continental faunas by introducing new faunal elements into an area. Repeated tectonic collisions may be one of the most important phenomena promoting continental biodiversity. Phylogenetics is a powerful method for investigating these processes.


Subject(s)
Lizards/classification , Lizards/genetics , Phylogeny , Animals , Base Sequence , DNA/genetics , DNA/isolation & purification , DNA Primers , Geography
4.
Mol Phylogenet Evol ; 10(1): 118-31, 1998 Aug.
Article in English | MEDLINE | ID: mdl-9751922

ABSTRACT

Phylogenetic relationships within the Laudakia caucasia species group on the Iranian Plateau were investigated using 1708 aligned bases of mitochondrial DNA sequence from the genes encoding ND1 (subunit one of NADH dehydrogenase), tRNAGln, tRNAIle, tRNAMet, ND2, tRNATrp, tRNAAla, tRNAAsn, tRNACys, tRNATyr, and COI (subunit I of cytochrome c oxidase). The aligned sequences contain 207 phylogenetically informative characters. Three hypotheses for historical fragmentation of Laudakia populations on the Iranian Plateau were tested. In two hypotheses, fragmentation of populations is suggested to have proceeded along continuous mountain belts that surround the Iranian Plateau. In another hypothesis, fragmentation is suggested to have resulted from a north-south split caused by uplifting of the Zagros Mountains in the late Miocene or early Pliocene [5-10 MYBP (million years before present)]. The shortest tree suggest the later hypothesis, and statistical tests reject the other two hypothesis. The phylogenetic tree is exceptional in that every branch is well supported. Geologic history provides dates for most branches of the tree. A plot of DNA substitutions against dates from geologic history refines the date for the north-south split across the Iranian Plateau to 9 MYBP (late Miocene). The rate of evolution for this segment of mtDNA is 0.65% (0.61-0.70%) change per lineage per million years. A hypothesis of area relationships for the biota of the Iranian Plateau is generated from the phylogenetic tree.


Subject(s)
Lizards/classification , Phylogeny , Animals , Base Pairing , DNA Replication , DNA, Mitochondrial , Genetic Variation , Humans , Iran , Lizards/genetics , Molecular Sequence Data , RNA, Transfer/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...