Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Ultramicroscopy ; 241: 113601, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36027687

ABSTRACT

Excitation of electrons into higher energy states in solid state materials can be induced by absorption of visible light, a physical process generally studied by optical absorption spectroscopy. A promising approach for improving the spatial resolution of optical absorption spectroscopy beyond the diffraction limit is the detection of photoinduced forces by an atomic force microscope operating under wavelength-dependent light irradiation. Here, we report on a combined photovoltaic/photothermal effect induced by the absorption of visible light by the microscope probes. By monitoring the photoinduced modifications of the oscillation of the probes, it is found that the oscillation phase-voltage parabolic signals display specific fingerprints which depend on light intensity and the nature of the materials composing the probes. In particular, a localized surface photovoltage (SPV) is evidenced at the tip apex of uncoated Si probes, while none is observed on Au-coated Si probes. The photothermal effects are distinguished from photovoltaic effects by specific shifts of the phase-voltage parabolas. The findings are relevant for the whole range of atomic force microscopy techniques making use of visible light as an additional means of local optical characterization.

2.
Nanoscale ; 12(3): 1842-1851, 2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31899471

ABSTRACT

The usage of magnetic nanoparticles (NPs) in applications necessitates a precise mastering of their properties at the single nanoparticle level. There has been a lot of progress in the understanding of the magnetic properties of NPs, but incomparably less when interparticle interactions govern the overall magnetic response. Here, we present a quantitative investigation of magnetic fields generated by small clusters of NPs assembled on a dielectric non-magnetic surface. Structures ranging from individual NPs to fifth-fold particulate clusters are investigated in their magnetization saturation state by magnetic force microscopy and numerical calculations. It is found that the magnetic stray field does not increase proportionally with the number of NPs in the cluster. Both measured and calculated magnetic force fields underline the great importance of the exact spatial arrangement of NPs, shedding light on the magnetic force field distribution of particulate clusters, which is relevant for the quantitative evaluation of their magnetization and perceptibly for many applications.

3.
Phys Rev Lett ; 125(25): 254301, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33416375

ABSTRACT

We present a specific near-field configuration where an electrostatic force gradient is found to strongly enhance the optomechanical driving of an atomic force microscope cantilever sensor. It is shown that incident photons generate a photothermal effect that couples with electrostatic fields even at tip-surface separations as large as several wavelengths, dominating the cantilever dynamics. The effect is the result of resonant phenomena where the photothermal-induced parametric driving acts conjointly (or against, depending on electric field direction) with a photovoltage generation in the cantilever. The results are achieved experimentally in an atomic force microscope operating in vacuum and explained theoretically through numerical simulations of the equation of motion of the cantilever. Intrinsic electrostatic effects arising from the electronic work-function difference of tip and surface are also highlighted. The findings are readily relevant for other optomicromechanical systems where electrostatic force gradients can be implemented.

4.
Nanotechnology ; 31(8): 085302, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31683263

ABSTRACT

The controlled manipulation and precise positioning of nanoparticles on surfaces is a critical requisite for studying interparticle interactions in various research fields including spintronics, plasmonics, and nanomagnetism. We present here a method where an atomic force microscope operating in vacuum is used to accurately rotate and displace CTAB-coated gold nanorods on silica surfaces. The method relies on operating an AFM in a bimodal way which includes both dynamic and contact modes. Moreover, the phase of the oscillating probe is used to monitor the nanoparticle trajectory, which amplitude variations are employed to evaluate the energy dissipation during manipulation. The nanoscale displacement modes involve nanorod in-plane rotation and sliding, but no rolling events. The transitions between these displacement modes depend on the angle between the scan axis direction and the nanorod long axis. The findings reveal the importance of mean tip-substrate distance and of oscillation amplitude of the tip. The role of substrate surface and of CTAB molecular bi-layer at nanorod surface is also discussed.

5.
Nanotechnology ; 29(15): 155704, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29406318

ABSTRACT

The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically <103 nm2) measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.

6.
Faraday Discuss ; 199: 323-334, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28428990

ABSTRACT

We present experimental and theoretical results on controlling nanoscale sliding friction and adhesion by electric fields on model contacts realized by bringing a conductive atomic force microscope tip into contact with the surface of a silicon-oxide/silicon wafer. We find that applying a bias voltage on silicon (or on the conductive tip) enables a noticeable control of the sliding forces. Two electrostatic interactions are identified as being relevant for the friction variation as a function of applied voltage. The first is a short-range electrostatic interaction between opposite charges localized at oxide-silicon/silicon and tip/silicon-oxide interfaces. This attractive interaction results from the high capacity of the oxide-semiconductor interface to change its charge density in response to a bias voltage. Various regimes of charging resulting from silicon electronic bands' alignment and deformation are evidenced. We mainly focused here on the strong charge accumulation and inversion domains. The second longer-range electrostatic interaction is between the voltage-induced bulk and surface charges of both tip and sample. This interaction decreases very slowly with the distance between tip and silicon surface, i.e. oxide thickness, and can be attractive or repulsive depending on voltage polarity. Our results demonstrate the possibility of controlling nanoscale friction/adhesion in nanoscale contacts involving semiconductors. These results are relevant for the operation of nanoscale devices or for on-surface nanomanipulation of metallic nanoparticles. We model the experimental results by adding an electrostatic energy contribution to the tip-surface binding energy, which translates into an increase or decrease of the normal force and ultimately of the sliding friction.

7.
Nanotechnology ; 27(5): 055402, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26751769

ABSTRACT

The force needed to move a nanometer-scale contact on various oxide surfaces has been studied using an atomic force microscope and theoretical modeling. Force-distance traces unveil a stick-slip movement with erratic slip events separated by several nanometers. A linear scaling of friction force with normal load along with low pull-off forces reveals dispersive adhesive interactions at the interface. We model our findings by considering a variable Lennard-Jones-like interaction potential, which accounts for slip-induced variation of the effective contact area. The model explains the formation and fluctuation of stick-slip phases and provides guidelines for predicting transitions from stick-slip to continuous sliding on oxide surfaces.

8.
Phys Rev Lett ; 111(8): 084301, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-24010441

ABSTRACT

An atomic force microscope reveals that the sliding of a nanotip on a graphite surface occurs through a nanoscale stick-slip mechanism. The angle between the sliding direction and a stiff crystallographic axis determines the periodicity of the slip events defining domains of various friction properties. The experimental data are interpreted using the reaction rate theory, with the energy barrier driven by a local deformation of the surface and a thermally activated relaxation.

9.
Phys Rev Lett ; 108(26): 266803, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-23005003

ABSTRACT

A low-temperature scanning tunneling microscope is employed to build a junction comprising a Co atom bridging a copper-coated tip and a Cu(100) surface. An Abrikosov-Suhl-Kondo resonance is evidenced in the differential conductance and its width is shown to vary exponentially with the ballistic conductance for all tips employed. Using a theoretical description based on the Anderson model, we show that the Kondo effect and the total conductance are related through the atomic relaxations affecting the environment of the Co atom.

10.
Phys Rev Lett ; 107(21): 216801, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-22181906

ABSTRACT

Low-temperature scanning tunneling microscopy and spectroscopy combined with first-principles simulations reveal a nondissociative physisorption of ferrocene molecules on a Cu(111) surface, giving rise to ordered molecular layers. At the interface, a 2D-like electronic band is found, which shows an identical dispersion as the Cu(111) Shockley surface-state band. Subsequent deposition of Cu atoms forms charged organometallic compounds that localize interface-state electrons.

11.
Phys Rev Lett ; 107(24): 246801, 2011 Dec 09.
Article in English | MEDLINE | ID: mdl-22243018

ABSTRACT

Low-temperature scanning tunneling microscopy and spectroscopy are employed to investigate electron tunneling from a C60-terminated tip into a Cu(111) surface. Tunneling between a C60 orbital and the Shockley surface states of copper is shown to produce negative differential conductance (NDC) contrary to conventional expectations. NDC can be tuned through barrier thickness or C60 orientation up to complete extinction. The orientation dependence of NDC is a result of a symmetry matching between the molecular tip and the surface states.

12.
Phys Rev Lett ; 101(11): 116602, 2008 Sep 12.
Article in English | MEDLINE | ID: mdl-18851307

ABSTRACT

Low-temperature spin-polarized scanning tunneling microscopy is employed to study spin transport across single cobalt-phthalocyanine molecules adsorbed on well-characterized magnetic nanoleads. A spin-polarized electronic resonance is identified over the center of the molecule and exploited to spatially resolve stationary spin states. These states reflect two molecular spin orientations and, as established by density functional calculations, originate from a ferromagnetic molecule-lead exchange interaction.

13.
Phys Rev Lett ; 99(24): 246102, 2007 Dec 14.
Article in English | MEDLINE | ID: mdl-18233461

ABSTRACT

Low-temperature scanning tunneling spectroscopy over Co nanoislands on Cu(111) showed that the surface states of the islands vary with their size. Occupied states exhibit a sizable downward energy shift as the island size decreases. The position of the occupied states also significantly changes across the islands. Atomic-scale simulations and ab initio calculations demonstrate that the driving force for the observed shift is related to size-dependent mesoscopic relaxations in the nanoislands.

SELECTION OF CITATIONS
SEARCH DETAIL
...