Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 35(52): 16970-16977, 2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31804835

ABSTRACT

The phase detection in the dynamic mode of the atomic force microscopes is a known technique for mapping nanoscale surface heterogeneities. We present here an additional functionality of this technique, which allows high-resolution imaging of embedded inorganic nanoparticles with diameter and interparticle distances of a few nanometers. The method is based on a highly nonlinear tip-sample interaction occurring markedly above the nanoparticles, giving thus a high phase contrast between zones with and without nanoparticles. A relationship between the tip-sample interaction strength and the phase signal is established in experiments and from calculations conducted with the model developed by Haviland et al. [ Soft Matter 2016 , 12 , 619 ], which is based on solving a combined equation of motion for both the cantilever and surface while taking into account the time-varying interaction forces. The nonlinear phase behavior at the origin of the subnanometer spatial resolution is found by numerical analyses to be the result of a local mechanical stiffening of the zone containing nanoparticles, which is enhanced by 2 orders of magnitude or more.

2.
Nanoscale ; 10(28): 13761-13766, 2018 Jul 19.
Article in English | MEDLINE | ID: mdl-29993081

ABSTRACT

Ferroelectric materials are interesting candidates for future photovoltaic applications due to their potential to overcome the fundamental limits of conventional single bandgap semiconductor-based solar cells. Although a more efficient charge separation and above bandgap photovoltages are advantageous in these materials, tailoring their photovoltaic response using ferroelectric functionalities remains puzzling. Here we address this issue by reporting a clear hysteretic character of the photovoltaic effect as a function of electric field and its dependence on the poling history. Furthermore, we obtain insight into light induced nonequilibrium charge carrier dynamics in Bi2FeCrO6 films involving not only charge generation, but also recombination processes. At the ferroelectric remanence, light is able to electrically depolarize the films with remanent and transient effects as evidenced by electrical and piezoresponse force microscopy (PFM) measurements. The hysteretic nature of the photovoltaic response and its nonlinear character at larger light intensities can be used to optimize the photovoltaic performance of future ferroelectric-based solar cells.

3.
J Phys Chem Lett ; 3(11): 1559-64, 2012 Jun 07.
Article in English | MEDLINE | ID: mdl-26285638

ABSTRACT

A key stage in engineering molecular functional organizations is represented by controlling the supramolecular assembly of single molecular building blocks, tectons, into ordered networks. Here, we show how an open-shell, propeller-like molecule has been deposited under UHV conditions on Au(111) and its supramolecular organization characterized by scanning tunneling microscopy (STM). Racemic islands were observed at room temperature, and their chirality was imaged at the molecular level at low temperature. Modeling further suggests that the observed chirally alternating ordering dominated by intermolecular interactions is energetically favored. Electron paramagnetic resonance and ultraviolet photoemission spectroscopy evidences suggest that the supramolecular networks may preserve the open-shell character of the tecton. These results represent a fundamental step forward toward the engineering of purely organic spintronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...