Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Microbiol Res ; 242: 126616, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33115624

ABSTRACT

Rice (Oryza sativa L.) growth and productivity has been negatively affected due to high soil salinity. However, some salt-tolerant plant growth-promoting bacteria (ST-PGPB) enhance crop growth and reduce the negative impacts of salt stress through regulation of some biochemical, physiological, and molecular features. Total thirty six ST-PGPB were isolated from sodic soil of eastern Uttar Pradesh, India, and screened for salt tolerance at different salt (NaCl) concentrations up to 2000 millimolar (mM). Out of thirty-six, thirteen strains indicated better growth and plant growth properties (PGPs) in NaCl amended medium. Among thirteen, one most effective Bacillus pumilus strain JPVS11 was molecularly characterized, which showed potential PGPs, such as indole-3-acetic acid (IAA),1-aminocyclo propane-1-carboxylicacid (ACC) deaminase activity, P-solubilization, proline accumulation and exopolysaccharides (EPS) production at different concentrations of NaCl (0 -1200 mM). Pot experiment was conducted on rice (Variety CSR46) at different NaCl concentrations (0, 50, 100, 200, and 300 mM) with and without inoculation of Bacillus pumilus strain JPVS11. At elevated concentrations of NaCl, the adverse effects on chlorophyll content, carotenoids, antioxidant activity was recorded in non-inoculated (only NaCl) plants. However, inoculation of Bacillus pumilus strain JPVS11 showed positive adaption and improve growth performance of rice as compared to non-inoculated in similar conditions. A significant (P < 0.05) enhancement plant height (12.90-26.48%), root length (9.55-23.09%), chlorophyll content (10.13-27.24%), carotenoids (8.38-25.44%), plant fresh weight (12.33-25.59%), and dry weight (8.66-30.89%) were recorded from 50 to 300 mM NaCl concentration in inoculated plants as compared to non-inoculated. Moreover, the plants inoculated with Bacillus pumilus strain JPVS11showed improvement in antioxidant enzyme activities of catalase (15.14-32.91%) and superoxide dismutase (8.68-26.61%). Besides, the significant improvement in soil enzyme activities, such as alkaline phosphatase (18.37-53.51%), acid phosphatase (28.42-45.99%), urease (14.77-47.84%), and ß-glucosidase (25.21-56.12%) were recorded in inoculated pots as compared to non-inoculated. These results suggest that Bacillus pumilus strain JPVS11 is a potential ST-PGPB for promoting plant growth attributes, soil enzyme activities, microbial counts, and mitigating the deleterious effects of salinity in rice.


Subject(s)
Bacillus pumilus/physiology , Oryza/growth & development , Oryza/microbiology , Plant Development , Salt Stress/physiology , Salt-Tolerant Plants/growth & development , Salt-Tolerant Plants/microbiology , Soil/chemistry , Antioxidants , Bacillus pumilus/classification , Bacillus pumilus/genetics , Bacillus pumilus/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Chlorophyll , Hydrogen Cyanide/metabolism , Indoleacetic Acids , Nitrogen Fixation , Phosphates/metabolism , Proline/metabolism , Salinity , Salt Tolerance/physiology , Seeds/microbiology , Siderophores/metabolism , Soil Microbiology , Stress, Physiological
2.
Front Microbiol ; 11: 576680, 2020.
Article in English | MEDLINE | ID: mdl-33072041

ABSTRACT

An efficient diazo dye degrading bacterial strain, Bacillus sp. DMS2 was isolated from a long-term textile dye polluted environment. The strain was assessed for its innate ability to completely degrade and detoxify Direct Red 81 (DR81) textile dye under microaerophilic conditions. The degradation ability of strain showed significant results on optimizing the nutritional and environmental parameters. Based on statistical models, maximum efficiency of decolorization achieved within 24 h for 100 mg/l of dye supplemented with glucose (0.02%), MgSO4 (0.002%) and urea (0.5%) at 30°C and pH (7.0). Moreover, a significant catabolic induction of a laccase and azoreductase suggested its vital role in degrading DR81 into three distinct metabolites (intermediates) as by-products. Further, toxicity analysis of intermediates were performed using seeds of common edible plants, aquatic plant (phytotoxicity) and the nematode model (animal toxicity), which confirmed the non-toxic nature of intermediates. Thus, the inclusive study of DMS2 showed promising efficiency in bioremediation approach for treating industrial effluents.

3.
3 Biotech ; 10(8): 332, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32656065

ABSTRACT

The allophycocyanin (APC) protein purified from Phormidium sp. A09DM was investigated for its in vivo antioxidant and anti-aging potential in Caenorhabditis elegans. An increased mean lifespan of APC-treated (100 µg/ml) worms (wild type) were observed from 16 ± 0.2 days (control) to 20 ± 0.1 days (treated). APC-treated worms also showed improved physiological marker of aging such as the rate of pharyngeal pumping and higher rate of survival against oxidative and thermal stress. Furthermore, APC was found to moderate the expression of human amyloid beta (Aß1-42) as well as associated Aß-induced paralysis in the transgenic C. elegans CL4176 upon increase in temperature. Furthermore, RNA interference (RNAi)-mediated studies revealed the dependence of downstream regulator daf-16, independent of stress-induced resistance gene skn-1 in the APC treated C. elegans. In the present study, we tried to demonstrate the anti-aging activity, longevity and protective effects of APC against cellular stress in C. elegans, which can lead to the use of this biomolecule in drug development for age-related disorders.

4.
Sci Rep ; 9(1): 9863, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31285455

ABSTRACT

The distinct sequence feature and spectral blue-shift (~10 nm) of phycocyanin, isolated from Nostoc sp. R76DM (N-PC), were investigated by phylogenetic and crystallographic analyses. Twelve conserved substitutions in N-PC sequence were found distributed unequally among α- and ß-subunit (3 in α- and 9 in ß-subunit). The phylogenetic analysis suggested that molecular evolution of α- and ß-subunit of Nostoc-phycocyanin is faster than evolution of Nostoc-species. The divergence events seem to have occurred more frequently in ß-subunit, compared to α-subunit (relative divergence, 7.38 for α-subunit and 9.66 for ß-subunit). Crystal structure of N-PC was solved at 2.35 Å resolution to reasonable R-factors (Rwork/RFree = 0.199/0.248). Substitutions congregate near interface of two αß-monomer in N-PC trimer and are of compensatory nature. Six of the substitutions in ß-subunit may be involved in maintaining topology of ß-subunit, one in inter-monomer interaction and one in interaction with linker-protein. The ß153Cys-attached chromophore adopts high-energy conformational state resulting due to reduced coplanarity of B- and C-pyrrole rings. Distortion in chromophore conformation can result in blue-shift in N-PC spectral properties. N-PC showed significant in-vitro and in-vivo antioxidant activity comparable with other phycocyanin. Since Nostoc-species constitute a distinct phylogenetic clade, the present structure would provide a better template to build a model for phycocyanins of these species.

5.
Int J Biol Macromol ; 134: 368-378, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31059742

ABSTRACT

Cyanobacteria are an immense source of innovative classes of pharmacologically active compounds exhibiting various biological activities ranging from antioxidants, antibiotics, anticancer, anti-inflammatory to anti-Alzheimer's disease. In the present study, we primarily targeted the inhibition of Beta-site amyloid precursor protein cleaving enzyme-1 (BACE1) by a naturally occurring cyanobacterial protein phycoerythrin (C-PE). BACE1 cleaves amyloid-ß precursor protein (APP) and leads to accumulation of neurotoxic amyloid beta (Aß) plaques in the brain, as an attribute of Alzheimer's disease (AD). Inhibition of BACE1 was measured in terms of their association and dissociation rate constants, thermodynamics of binding using surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). The kinetic parameters for enzyme activity were also measured using synthetic decapeptide as a substrate. We further validated the potential of PE by in-vivo histopathological staining of Aß aggregate mutant Caenorhabditis elegans CL4176 by Thioflavin-T. The present studies pave the way for the application of naturally occurring C-PE as a putative therapeutic drug for the AD.


Subject(s)
Cyanobacteria/chemistry , Phycoerythrin/chemistry , Phycoerythrin/pharmacology , Amyloid Precursor Protein Secretases/chemistry , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Caenorhabditis elegans , Cyanobacteria/metabolism , Enzyme Activation , Humans , Immunohistochemistry , Kinetics , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Refolding , Recombinant Proteins , Structure-Activity Relationship
6.
World J Biol Chem ; 7(1): 100-9, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26981199

ABSTRACT

An obligatory sunlight requirement for photosynthesis has exposed cyanobacteria to different quantity and quality of light. Cyanobacteria can exhibit efficient photosynthesis over broad region (450 to 650 nm) of solar spectrum with the help of brilliantly coloured pigment proteins called phycobiliproteins (PBPs). Besides light-harvesting, PBPs are found to involve in several life sustaining phenomena including photoprotection in cyanobacteria. The unique spectral features (like strong absorbance and fluorescence), proteineous nature and, some imperative properties like hepato-protective, anti-oxidants, anti-inflammatory and anti-aging activity of PBPs enable their use in food, cosmetics, pharmaceutical and biomedical industries. PBPs have been also noted to show beneficial effect in therapeutics of some disease like Alzheimer and cancer. Such large range of applications increases the demand of PBPs in commodity market. Therefore, the large-scale and coast effective production of PBPs is the real need of time. To fulfil this need, many researchers have been working to find the potential producer of PBPs for the production and purification of PBPs. Results of these efforts have caused the inventions of some novel techniques like mixotrophic and heterotrophic strategies for production and aqueous two phase separation for purification purpose. Overall, the present review summarises the recent findings and identifies gaps in the field of production, purification and applications of this biological and economically important proteins.

7.
EXCLI J ; 14: 268-89, 2015.
Article in English | MEDLINE | ID: mdl-26417362

ABSTRACT

Cyanobacteria trap light energy by arrays of pigment molecules termed "phycobilisomes (PBSs)", organized proximal to "reaction centers" at which chlorophyll perform the energy transduction steps with highest quantum efficiency. PBSs, composed of sequential assembly of various chromophorylated phycobiliproteins (PBPs), as well as nonchromophoric, basic and hydrophobic polypeptides called linkers. Atomic resolution structure of PBP is a heterodimer of two structurally related polypeptides but distinct specialised polypeptides- a and ß, made up of seven alpha-helices each which played a crucial step in evolution of PBPs. PBPs carry out various light dependent responses such as complementary chromatic adaptation. The aim of this review is to summarize and discuss the recent progress in this field and to highlight the new and the questions that remain unresolved.

8.
Bioresour Technol ; 190: 219-26, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25958145

ABSTRACT

The functionality and stability of phycobiliproteins (PBPs) phycoerythrin (PE), phycocyanin (PC) and allophycocyanin (APC) were investigated under various temperatures, pHs and oxidative stressors. All PBPs were thermostable up to 4-40°C; however, their concentration decreased rapidly at 60-80°C. The maximum stability of all PBPs was in the pH range 6.0-7.0. Decrease in PBPs content was found under high acidic (pH 2-4) and alkaline conditions (pH 8-12). The oxidizing agent (0.1-0.6%) showed the least effect on the stability of PBPs; however, 0.8-1.0% H2O2 caused significant loss of PBPs. Contrary to PE, PC and APC was more susceptible to an oxidizing agent. The chromophore associated with α- and ß-subunit of PBPs and thus, their functionality (fluorescence) was severely affected under high temperature (60-80°C), and oxidizing agent, as well as low (2-4) and high (8-12) pH. Contrary to PC and APC, functionality of PE was surprisingly maintained even at pHs 6-12 and under oxidative stress.


Subject(s)
Bacterial Proteins/chemistry , Cyanobacteria/chemistry , Hydrogen Peroxide/chemistry , Phycobiliproteins/chemistry , Bacterial Proteins/analysis , Hydrogen-Ion Concentration , Materials Testing , Phycobiliproteins/analysis , Protein Stability , Temperature
9.
Appl Biochem Biotechnol ; 176(6): 1551-63, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26013282

ABSTRACT

Cyanobacteria are the most promising group of photosynthetic microorganisms capable of producing an array of natural products of industrial importance. Scytonemin is a small hydrophobic alkaloid pigment molecules present in the extracellular sheath of several cyanobacteria as a protective mechanism against short wavelength solar ultraviolet (UV) radiation. It has great efficacy to minimize the production of reactive oxygen species and formation of DNA lesions. The biosynthesis of scytonemin is regulated by different physico-chemical stressors. Scytonemin display multiple roles, functioning as a potent UV sunscreen and antioxidant molecules, and can be exploited in cosmetic and other industries for the development of new cosmeceuticals. Herein, we review the occurrence, biosynthesis, and potential application of scytonemin in photoprotection, pharmaceuticals, and biomedical research.


Subject(s)
Antioxidants , Cyanobacteria/chemistry , DNA Damage , Indoles/chemistry , Indoles/therapeutic use , Phenols/chemistry , Phenols/therapeutic use , Sunscreening Agents , Antioxidants/chemistry , Antioxidants/therapeutic use , Cyanobacteria/metabolism , Humans , Indoles/metabolism , Phenols/metabolism , Sunscreening Agents/chemistry , Sunscreening Agents/therapeutic use , Ultraviolet Rays/adverse effects
10.
Photochem Photobiol ; 91(4): 837-44, 2015.
Article in English | MEDLINE | ID: mdl-25763657

ABSTRACT

An in vitro analysis of the effects of photosynthetically active and ultraviolet radiations was executed to assess the photostability of biologically relevant pigments phycocyanin (PC), phycoerythrin (PE) and allophycocyanin (APC) isolated from Lyngbya sp. A09DM. Ultraviolet (UV) irradiances significantly affected the integrity of PC, PE and APC; however, PAR showed least effect. UV radiation affected the bilin chromophores covalently attached to phycobiliproteins (PBPs). Almost complete elimination of the chromophore bands associated with α- and ß-subunit of PE and APC occurred after 4 h of UV-B exposure. After 5 h of UV-B exposure, the content of PC, PE and APC decreased by 51.65%, 96.8% and 96.53%, respectively. Contrary to PAR and UV-A radiation, a severe decrease in fluorescence of all PBPs was observed under UV-B irradiation. The fluorescence activity of extracted PBP was gradually inhibited immediately after 15-30 min of UV-B exposure. In comparison to the PC, the fluorescence properties of PE and APC were severely lost under UV-B radiation. Moreover, the present study indicates that UV-B radiation can damage the structural and functional integrity of phycobiliproteins leading to the loss of their ecological and biological functions.


Subject(s)
Cyanobacteria/chemistry , Phycocyanin/chemistry , Phycoerythrin/chemistry , Ultraviolet Rays , Molecular Sequence Data
11.
Int J Biol Macromol ; 74: 29-35, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25485942

ABSTRACT

A functional and stable truncated-phycoerythrin (T-PE) was found as a result of spontaneous in vitro truncation. Truncation was noticed to occur during storage of purified native-phycoerythrin (N-PE) isolated from Lyngbya sp. A09DM. SDS and native-PAGE analysis revealed the truncation of N-PE, containing α (19.0 kDa)--and ß (21.5 kDa)--subunits to the only single peptide of ∼15.45 kDa (T-PE). The peptide mass fingerprinting (PMF) and MS/MS analysis indicated that T-PE is the part of α-subunit of N-PE. UV-visible absorption peak of N-PE was found to split into two peaks (540 and 565 nm) after truncation, suggesting the alterations in its folded state. The emission spectra of both N-PE and T-PE show the emission band centered at 581 nm (upon excitation at 559 nm) suggested the maintenance of fluorescence even after significant truncation. Urea-induced denaturation and Gibbs-free energy (ΔGD°) calculations suggested that the folding and structural stability of T-PE was almost similar to that of N-PE. Presented bunch of evidences revealed the truncation in N-PE without perturbing its folding, structural stability and functionality (fluorescence), and thereby suggested its applicability in fluorescence based biomedical techniques where smaller fluorescence molecules are more preferable.


Subject(s)
Cyanobacteria/chemistry , Peptide Fragments/chemistry , Phycoerythrin/chemistry , Amino Acid Sequence , Molecular Sequence Data , Peptide Fragments/isolation & purification , Phycoerythrin/isolation & purification , Protein Folding/drug effects , Protein Stability/drug effects , Protein Subunits/chemistry , Urea/pharmacology
12.
J Photochem Photobiol B ; 141: 154-69, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25463663

ABSTRACT

Cyanobacteria are the dominant photosynthetic prokaryotes from an ecological, economical, or evolutionary perspective, and depend on solar energy to conduct their normal life processes. However, the marked increase in solar ultraviolet radiation (UVR) caused by the continuous depletion of the stratospheric ozone shield has fueled serious concerns about the ecological consequences for all living organisms, including cyanobacteria. UV-B radiation can damage cellular DNA and several physiological and biochemical processes in cyanobacterial cells, either directly, through its interaction with certain biomolecules that absorb in the UV range, or indirectly, with the oxidative stress exerted by reactive oxygen species. However, cyanobacteria have a long history of survival on Earth, and they predate the existence of the present ozone shield. To withstand the detrimental effects of solar UVR, these prokaryotes have evolved several lines of defense and various tolerance mechanisms, including avoidance, antioxidant production, DNA repair, protein resynthesis, programmed cell death, and the synthesis of UV-absorbing/screening compounds, such as mycosporine-like amino acids (MAAs) and scytonemin. This study critically reviews the current information on the effects of UVR on several physiological and biochemical processes of cyanobacteria and the various tolerance mechanisms they have developed. Genomic insights into the biosynthesis of MAAs and scytonemin and recent advances in our understanding of the roles of exopolysaccharides and heat shock proteins in photoprotection are also discussed.


Subject(s)
Cyanobacteria/radiation effects , Ultraviolet Rays , Antioxidants/chemistry , Antioxidants/metabolism , Bacterial Proteins/metabolism , Cyanobacteria/metabolism , Cyclohexanones/chemistry , Cyclohexanones/metabolism , DNA Damage/radiation effects , Heat-Shock Proteins/metabolism , Indoles/chemistry , Indoles/metabolism , Phenols/chemistry , Phenols/metabolism , Polysaccharides, Bacterial/biosynthesis , Stress, Physiological/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...