Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 16: 951164, 2022.
Article in English | MEDLINE | ID: mdl-36440280

ABSTRACT

Spatio-temporal pattern recognition is a fundamental ability of the brain which is required for numerous real-world activities. Recent deep learning approaches have reached outstanding accuracies in such tasks, but their implementation on conventional embedded solutions is still very computationally and energy expensive. Tactile sensing in robotic applications is a representative example where real-time processing and energy efficiency are required. Following a brain-inspired computing approach, we propose a new benchmark for spatio-temporal tactile pattern recognition at the edge through Braille letter reading. We recorded a new Braille letters dataset based on the capacitive tactile sensors of the iCub robot's fingertip. We then investigated the importance of spatial and temporal information as well as the impact of event-based encoding on spike-based computation. Afterward, we trained and compared feedforward and recurrent Spiking Neural Networks (SNNs) offline using Backpropagation Through Time (BPTT) with surrogate gradients, then we deployed them on the Intel Loihi neuromorphic chip for fast and efficient inference. We compared our approach to standard classifiers, in particular to the Long Short-Term Memory (LSTM) deployed on the embedded NVIDIA Jetson GPU, in terms of classification accuracy, power, and energy consumption together with computational delay. Our results show that the LSTM reaches ~97% of accuracy, outperforming the recurrent SNN by ~17% when using continuous frame-based data instead of event-based inputs. However, the recurrent SNN on Loihi with event-based inputs is ~500 times more energy-efficient than the LSTM on Jetson, requiring a total power of only ~30 mW. This work proposes a new benchmark for tactile sensing and highlights the challenges and opportunities of event-based encoding, neuromorphic hardware, and spike-based computing for spatio-temporal pattern recognition at the edge.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3530-3533, 2022 07.
Article in English | MEDLINE | ID: mdl-36086280

ABSTRACT

Identifying different functional regions during a brain surgery is a challenging task usually performed by highly specialized neurophysiologists. Progress in this field may be used to improve in situ brain navigation and will serve as an important building block to minimize the number of animals in preclinical brain research required by properly positioning implants intraoperatively. The study at hand aims to correlate recorded extracellular signals with the volume of origin by deep learning methods. Our work establishes connections between the position in the brain and recorded high-density neural signals. This was achieved by evaluating the performance of BLSTM, BGRU, QRNN and CNN neural network architectures on multisite electrophysiological data sets. All networks were able to successfully distinguish cortical and thalamic brain regions according to their respective neural signals. The BGRU provides the best results with an accuracy of 88.6 % and demonstrates that this classification task might be solved in higher detail while minimizing complex preprocessing steps.


Subject(s)
Machine Learning , Rodentia , Animals , Brain/physiology , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...