Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(17)2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34501171

ABSTRACT

Calcium phosphate (CaP) coatings are able to improve the osseointegration process due to their chemical composition similar to that of bone tissues. Among the methods of producing CaP coatings, the electrochemically assisted deposition (ECAD) is particularly important due to high repeatability and the possibility of deposition at room temperature and neutral pH, which allows for the co-deposition of inorganic and organic components. In this work, the ECAD of CaP coatings from an acetate bath with a Ca:P ratio of 1.67, was developed. The effect of the ECAD conditions on CaP coatings deposited on commercially pure titanium grade 4 (CpTi G4) subjected to sandblasting and autoclaving was presented. The physicochemical characteristics of the ECAD-derived coatings was carried out using SEM, EDS, FTIR, 2D roughness profiles, and amplitude sensitive eddy current method. It was showed that amorphous calcium phosphate (ACP) coatings can be obtained at a potential -1.5 to -10 V for 10 to 60 min at 20 to 70 °C. The thickness and surface roughness of the ACP coatings were an increasing function of potential, time, and temperature. The obtained ACP coatings are a precursor in the process of apatite formation in a simulated body fluid. The optimal ACP coating for use in dentistry was deposited at a potential of -3 V for 30 min at 20 °C.

2.
J Funct Biomater ; 12(1)2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33562425

ABSTRACT

Calcium phosphate coatings are able to improve the osseointegration process due to their chemical composition, which is similar to that of bone tissues. In this work, to increase the long-term corrosion resistance and to improve the osseointegration process of commercially pure titanium Grade 4 (CpTi G4), biomimetic amorphous calcium phosphate (ACP) coatings were electrodeposited for the first time from an acetate bath with a pH level of 7.0 and a Ca:P ratio of 1.67. ACP coatings were obtained on CpTi G4 substrate subjected to sandblasting and autoclaving using electrochemically assisted deposition at a potential of -3 V relative to the open circuit potential for 30 min at room temperature. SEM, EDS, 2D roughness profiles, amplitude-sensitive eddy current method, and Kelvin scanning probe were used for the surface characterization of the biomaterial under study. In vitro corrosion resistance tests were conducted for 21 days in artificial saliva using open circuit potential, polarization curves, and electrochemical impedance spectroscopy measurements. The passive-transpassive behavior was revealed for the obtained ACP coatings. The long-term corrosion resistance test showed a deterioration of the protective properties for CpTi G4 uncoated and coated with ACP with immersion time. The mechanism and kinetics of the pitting corrosion on the CpTi G4|TiO2|ACP coating system are discussed in detail.

SELECTION OF CITATIONS
SEARCH DETAIL
...