Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 16282, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009758

ABSTRACT

Direct conversion of biogas via the integrative process of dry reforming of methane (DRM) and catalytic methane decomposition (CDM) has received a great attention as a promising green catalytic process for simultaneous production of syngas and carbon nanotubes (CNTs). In this work, the effects of reaction temperature of 700-1100 °C and CH4/CO2 ratio of biogas were investigated over NiMo/MgO catalyst in a fixed bed reactor under industrial feed condition of pure biogas. The reaction at 700 °C showed a rapid catalyst deactivation within 3 h due to the formation of amorphous carbon on catalyst surface. At higher temperature of 800-900 °C, the catalyst can perform the excellent performance for producing syngas and carbon nanotubes. Interestingly, the smallest diameter and the highest graphitization of CNTs was obtained at high temperature of 1000 °C, while elevating temperature to 1100 °C leads to agglomeration of Ni particles, resulting in a larger size of CNTs. The reaction temperature exhibits optimum at 800 °C, providing the highest CNTs yield with high graphitization, high syngas purity up to 90.04% with H2/CO ratio of 1.1, and high biogas conversion (XCH4 = 86.44%, XCO2 = 95.62%) with stable performance over 3 h. The typical composition biogas (CH4/CO2 = 1.5) is favorable for the integration process, while the CO2 rich biogas caused a larger grain size of catalyst and a formation of molybdenum oxide nanorods (MoO3). The long-term stability of NiMo/MgO catalyst at 800 °C showed a stable trend (> 20 h). The experimental findings confirm that NiMo/MgO can perform the excellent activity and high stability at the optimum condition, allowing the process to be more promising for practical applications.

2.
ACS Omega ; 9(26): 28637-28647, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38973900

ABSTRACT

Developing a metallic catalyst for converting furfural (FAL) to highly valuable products such as cyclopentanone (CPO) is important for fine chemical synthesis by the efficient utilization of biomass resources. The presence of diverse unsaturated carbon atoms in FAL and the rearrangement of oxygen atoms hinder the production of CPO. We developed an optimal nickel (Ni)-to-platinum (Pt) molar ratio (1:0.007) for a bimetallic Ni-Pt/alumina (Al2O3) catalyst with a low Pt loading via an impregnation method to efficiently catalyze the selective hydrogenation of FAL in an aqueous solution to form CPO. The comprehensive characterizations by X-ray diffraction and X-ray absorption near edge structure analyses elucidated the formation of Ni0/Pt0 and Ni2+/Pt4+ after reduction by H2. The addition of a low amount of the Pt-Ni/Al2O3 catalyst resulted in an alleviation of H2 reduction behavior detected by hydrogen temperature-programmed reduction, accompanied by low H2 desorption ability observed by hydrogen temperature-programmed desorption. The catalytic activity of Ni-Pt/Al2O3 was higher than those of Ni/Al2O3 and Pt/Al2O3 catalysts. The maximum CPO yield was 66% with 93% FAL conversion under the optimized conditions (160 °C, 20 bar of H2 pressure, and 2 h). Isotopic deuterium oxide (D2O) labeling revealed the transfer of deuterium (D) atoms from D2O to the intermediates and products during hydrogenation and rearrangement, which confirmed that water was a medium for rearrangement and the source of hydrogen for the reaction. This study developed an efficient catalyst for the catalytic hydrogenation and ring rearrangement of FAL into CPO.

3.
Chempluschem ; : e202400075, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828489

ABSTRACT

Catalytic thermochemical conversion offers a sustainable method to upgrade oil-based feedstocks into highly valuable biofuel, aligning with the modern biorefinery concept. Herein, a series of IrRe/SAPO-11 catalysts with different Ir to Re molar ratios compared to reference Ir/SAPO-11 and Re/SAPO-11 catalysts was prepared using a wetness impregnation method. These catalysts were used for the direct production of sustainable aviation fuels (SAFs) via efficient hydrodeoxygenation and hydroisomerization of triglycerides. The catalyst screening confirmed that the optimum IrRe/SAPO-11 catalyst, with an equivalent Ir to Re molar ratio, exhibited the highest hydrodeoxygenation activity under milder operation conditions than the conditions used in previous studies. Increasing the reaction temperature up to 330 °C enhanced the formation of iso-alkanes in the liquid product, achieving a freezing point of -31.4 °C without additional cold flow improvers. Furthermore, a long-term stability experiment demonstrated that the developed Ir-Re system exhibited exceptional performance over 150 h. This excellent catalytic activity and stability of the bifunctional IrRe/SAPO-11 catalyst was owing to its suitable interface between metallic and oxide sites, mixed mesoporous structures, reduced catalyst size, and increased Lewis acid ratio, as confirmed by our comprehensive characterizations.

4.
Sci Rep ; 13(1): 21027, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38030659

ABSTRACT

This study aims to investigate the role of hydrogen on CNTs synthesis and kinetics of CNTs formation. The CNTs were synthesized by catalytic chemical vapor deposition of methane over FeMo/MgO catalyst. The experimental results revealed that hydrogen plays an important role in the structural changes of catalyst during the pre-reduction process. The catalyst structure fully transformed into metallic FeMo phases, resulting in an increased yield of 5 folds higher than those of the non-reduced catalyst. However, the slightly larger diameter and lower crystallinity ratio of CNTs was obtained. The hydrogen co-feeding during the synthesis can slightly increase the CNTs yield. After achieving the optimum amount of hydrogen addition, further increase in hydrogen would inhibit the methane decomposition, resulting in lower product yield. The hydrogenation of carbon to methane was proceeded in hydrogen co-feed process. However, the hydrogenation was non-selective to allotropes of carbon. Therefore, the addition of hydrogen would not benefit neither maintaining the catalyst stability nor improving the crystallinity of the CNT products. The kinetic model of CNTs formation, derived from the two types of active site of dissociative adsorption of methane, corresponded well to the experimental results. The rate of CNTs formation greatly increases with the partial pressure of methane but decreases when saturation is exceeded. The activation energy was found to be 13.22 kJ mol-1, showing the rate controlling step to be in the process of mass transfer.

5.
Int J Biol Macromol ; 253(Pt 7): 127464, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37852399

ABSTRACT

Sugarcane bagasse (SCB) and sugarcane bagasse ash (SCB-ash) are major agricultural residues from sugar processing industries in Thailand. In this study, SCB-derived activated carbon (SCBAC) with the optimum surface area of 489 m2/g was prepared by steam activation at 900 °C for 1 h. Hybrid granular activated carbons (GACs) were successfully developed by mixing SCBAC with bio-based polymers, alginate and gelatin, at the weight ratio of 3:1 for methylene blue (MB) adsorption. SCB-ash, which was additionally mixed in the GACs, could significantly increase compressive strength of the GACs, but decrease their surface areas and MB adsorption efficiencies. An existence of gelatin up to 30 wt% in the polymer matrix of the GACs showed a slight increase in swelling degree and iodine number, but could not enhance bead strength and MB adsorption efficiency due to its relatively lower bulk density and specific surface area. Maximum MB adsorption capacities of the GACs were found at 290-403 mg/g under this study's experimental condition. MB adsorption efficiencies at above 90 % with no deformation of all of the selected SCB hybrid GACs were finally confirmed after seven consecutive adsorption-desorption cycles using a simple regeneration with ethanol.


Subject(s)
Saccharum , Water Pollutants, Chemical , Cellulose/chemistry , Polymers , Methylene Blue/chemistry , Charcoal/chemistry , Gelatin , Adsorption , Saccharum/chemistry , Alginates , Kinetics , Water Pollutants, Chemical/chemistry
6.
Sci Rep ; 13(1): 12928, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37558901

ABSTRACT

Biogas has been widely regarded as a promising source of renewable energy. Recently, the direct conversion of biogas over heterogeneous catalysts for the simultaneous production of syngas and carbon nanotubes exhibits a high potential for full utilization of biogas with great benefits. Involving the combined dry reforming of methane and catalytic decomposition of methane, the efficiency of process is strongly depended on the catalyst activity/stability, mainly caused by carbon deposition. In this study, Ni-Mo catalyst is engineered to provide a life-long performance and perform high activity in the combined process. The surface modification of catalysts by a controlled carburization pretreatment is proposed for the first time to produce a carbide catalyst along with improving the catalyst stability as well as the reactivity for direct conversion of biogas. The performance of as-prepared carbide catalysts is investigated with comparison to the oxide and metallic ones. As a result, the Ni-Mo2C catalyst exhibited superior activity and stability over its counterparts, even though the condensed nanocarbon was largely grown and covered on the surface. In addition, up to 82% of CH4 conversion and 93% of CO2 conversion could remain almost constant at 800 °C throughout the entire test period of 3 h under a high flowrate inlet stream of pure biogas at 48,000 cm3 g-1 h-1. The XPS spectra of catalysts confirmed that the presence of Mo2C species on the catalyst surface could promote the stability and reactivity of the catalyst, resulting in higher productivity of carbon nanotubes over a longer time.

7.
Sci Rep ; 13(1): 9342, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37291234

ABSTRACT

The upgradation of methane in biogas by hydrogenation of CO2 has been currently recognized as a promising route for efficient full utilization of renewable biogas with potential benefits for storage of renewable hydrogen energy and abatement of greenhouse gas emission. As a main constituent of biogas, CO2 can act as a backbone for the formation of additional CH4 by hydrogenation, then producing higher amounts of biomethane. In this work, the upgradation process was investigated in a prototype reactor of double pass operation with vertical alignment using an optimized Ni-Ce/Al-MCM-41 catalyst. The experimental results show that the double pass operation that removes water vapor during the run can significantly increase CO2 conversion, resulting in higher CH4 production yield. As a result, the purity of biomethane increased by 15% higher than a single pass operation. In addition, search for optimum condition of the process was carried out within an investigated range of conditions including flowrate (77-1108 ml min-1), pressure (1 atm-20 bar), and temperature (200-500 °C). The durability test for 458 h was performed using the obtained optimum condition, and it shows that the optimized catalyst can perform excellent stability with negligible influence by the observed change in catalyst properties. The comprehensive characterization on physicochemical properties of fresh and spent catalysts was performed, and the results were discussed.


Subject(s)
Biofuels , Carbon Dioxide , Hydrogenation , Carbon Dioxide/chemistry , Methane/chemistry
8.
Sci Rep ; 13(1): 4705, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36949096

ABSTRACT

In this work, a series of innovative metal oxide impregnated waste-derived activated carbons (MO/AC) was synthesized and used to purify the simulated biohydrogen based on the concept of CO2 removal from the gas stream. Effects of metal oxide types (CaO, SrO and MgO) and contents of the best metal oxides on the morphology and the CO2 adsorption capacity from the biohydrogen were investigated. It was found that both metal oxide types and contents played an important role on the adsorbent textural property and surface chemistry as well as the CO2 adsorption capacity. Among all synthesized adsorbent, the MgO-impregnated AC with 12 wt.% MgO (12MgO/AC) exhibited the highest CO2 adsorption capacity of around 94.02 mg/g. With this successive adsorbent, the biohydrogen with the H2 purity higher than 90 mol% can be achieved from the gas stream with 50 mol% CO2 for the first 2 min of adsorption period in a fixed bed reactor. The mechanism of CO2 adsorption occurred via a combined process of the physisorption and chemisorption. Besides, the 12MgO/AC exhibited a high recyclability after several repetitive adsorption/desorption cycles.

9.
Nanomaterials (Basel) ; 13(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36678074

ABSTRACT

Carbon dioxide (CO2) photoreduction to high-value products is a technique for dealing with CO2 emissions. The method involves the molecular transformation of CO2 to hydrocarbon and alcohol-type chemicals, such as methane and methanol, relying on a photocatalyst, such as titanium dioxide (TiO2). In this research, TiO2 nanosheets (TNS) were synthesized using a hydrothermal technique in the presence of a hydrofluoric acid (HF) soft template. The nanosheets were further composited with graphene oxide and doped with copper oxide in the hydrothermal process to create the copper-TiO2 nanosheets/graphene oxide (CTNSG). The CTNSG exhibited outstanding photoactivity in converting CO2 gas to methane and acetone. The production rate for methane and acetone was 12.09 and 0.75 µmol h-1 gcat-1 at 100% relative humidity, providing a total carbon consumption of 71.70 µmol gcat-1. The photoactivity of CTNSG was attributed to the heterostructure interior of the two two-dimensional nanostructures, the copper-TiO2 nanosheets and graphene oxide. The nanosheets-graphene oxide interfaces served as the n-p heterojunctions in holding active radicals for subsequent reactions. The heterostructure also directed the charge transfer, which promoted electron-hole separation in the photocatalyst.

10.
Anal Chim Acta ; 1230: 340368, 2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36192059

ABSTRACT

Detection of hydrogen peroxide and glucose in nanomolar level is crucial for point-of-care medical diagnosis. It has been reported that human's central nervous system diseases such as Alzheimer's disease, Parkinson's disease, and even amyotrophic lateral sclerosis, are presumably caused H2O2 or reactive radical species (ROS). Sensing of H2O2 released from human biofluids, tissues, organ from metabolism disorder at ultra-low concentration assists for early identification of severe diabetis mellitus related to glucose, and heart attack, as well as stroke related to cholesterol. In this work, carbon dots (CDs) having an average diameter at 6.99 nm with highly photoluminescence performance were successfully synthesized from palm empty fruit bunch (EFB) using green and environmentally friendly process via hydrothermal condition. CDs acted well on peroxidase-like activity for H2O2 detection at room temperature, however their sensitivity on ultra-low H2O2 concentration needed to be improved. To enhance their reactivity on H2O2 nanozyme activity at room temperature, synthesis of hybrid metal nanoparticles (AgNPs and PtNPs) on CDs surface was established. The findings exhibited that CDs/PtNPs was the most suitable nanozyme achieving highly efficient peroxidase mimic for dual mode of colorimetric and fluorescent H2O2 sensing platform at very low limit of detection of 0.01 mM (10 nM) H2O2.


Subject(s)
Colorimetry , Nanocomposites , Carbon , Coloring Agents , Glucose , Humans , Hydrogen Peroxide , Peroxidase/metabolism , Platinum , Reactive Oxygen Species
11.
Sci Rep ; 12(1): 15195, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36071147

ABSTRACT

Selecting a suitable catalyst for implementing the simultaneous production of hydrogen-rich syngas and multi-walled carbon nanotubes through the integration of dry reforming and methane decomposition reactions has recently gained great interests. In this study, a series of bimetallic (NiMo/MgO) and trimetallic (CoNiMo/MgO, FeNiMo/MgO, CoFeMo/MgO) catalysts was prepared and evaluated for a catalytic activity of CH4 and CO2 conversions of biogas in a fixed bed reactor at 800 °C and atmospheric pressure. Among the investigated catalysts, the bimetallic NiMo/MgO catalyst showed the outstanding catalytic performance with 86.4% CH4 conversion and 95.6% CO2 conversion as well as producing the highest syngas purity of 90.0% with H2/CO ratio = 1.1. Moreover, the characterization of the synthesized solid products proved that the well-aligned structured morphology, high purity, and excellent textural properties of CNTs were obtained by using NiMo/MgO catalyst. On the other hand, using trimetallic catalysts which have the composition of Co and Fe leads to the severe deactivation. This could be attributed the catalyst oxidation with CO2 in biogas, resulting in the transformation of metals into large metal oxides. The integrative process with NiMo/MgO catalyst is regarded as a promising pathway, which has a high potential for directly converting biogas into the high value-added products and providing a green approach for managing the enormous amounts of wastes.


Subject(s)
Nanotubes, Carbon , Nickel , Biofuels , Carbon Dioxide , Hydrogen , Magnesium Oxide
13.
Sci Rep ; 12(1): 10550, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35732805

ABSTRACT

Carbon dots (CDs) are categorized as an emerging class of zero-dimension nanomaterials having high biocompatibility, photoluminescence, tunable surface, and hydrophilic property. CDs, therefore, are currently of interest for bio-imaging and nano-medicine applications. In this work, polyethylene glycol functionalized CDs (CD-PEG) were prepared from oil palm empty fruit bunch by a one-pot hydrothermal technique. PEG was chosen as a passivating agent for the enhancement of functionality and photoluminescence properties of CDs. To prepare the CDs-PEG, the effects of temperature, time, and concentration of PEG were investigated on the properties of CDs. The as-prepared CDs-PEG were characterized by several techniques including dynamic light scattering, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, fluorescence spectroscopy, Raman spectroscopy, Fourier-transform infrared spectroscopy and Thermogravimetric analysis. The as-prepared CDs under hydrothermal condition at 220 °C for 6 h had spherical morphology with an average diameter of 4.47 nm. Upon modification, CDs-PEG were photo-responsive with excellent photoluminescence property. The CDs-PEG was subsequently used as a drug carrier for doxorubicin [DOX] delivery to CaCo-2, colon cancer cells in vitro. DOX was successfully loaded onto CDs-PEG surface confirmed by FT-IR and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometer (MALDI-TOF/MS) patterns. The selective treatment of CDs-PEG-DOX against the colorectal cancer cells, , relative to normal human fibroblast cells was succesfully demonstrated.


Subject(s)
Colonic Neoplasms , Quantum Dots , Caco-2 Cells , Carbon/chemistry , Colonic Neoplasms/drug therapy , Doxorubicin , Fluorescent Dyes/chemistry , Humans , Polyethylene Glycols/chemistry , Quantum Dots/chemistry , Spectroscopy, Fourier Transform Infrared , Theranostic Nanomedicine
14.
Int J Mol Sci ; 23(9)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35563393

ABSTRACT

This work aims to enhance the value of palm empty fruit bunches (EFBs), an abundant residue from the palm oil industry, as a precursor for the synthesis of luminescent carbon dots (CDs). The mechanism of fIuorimetric sensing using carbon dots for either enhancing or quenching photoluminescence properties when binding with analytes is useful for the detection of ultra-low amounts of analytes. This study revealed that EFB-derived CDs via hydrothermal synthesis exceptionally exhibited luminescence properties. In addition, surface modification for specific binding to a target molecule substantially augmented their PL characteristics. Among the different nitrogen and sulfur (N and S) doping agents used, including urea (U), sulfate (S), p-phenylenediamine (P), and sodium thiosulfate (TS), the results showed that PTS-CDs from the co-doping of p-phenylenediamine and sodium thiosulfate exhibited the highest PL properties. From this study on the fluorimetric sensing of several metal ions, PTS-CDs could effectively detect Fe3+ with the highest selectivity by fluorescence quenching to 79.1% at a limit of detection (LOD) of 0.1 µmol L-1. The PL quenching of PTS-CDs was linearly correlated with the wide range of Fe3+ concentration, ranging from 5 to 400 µmol L-1 (R2 = 0.9933).


Subject(s)
Carbon , Quantum Dots , Carbon/chemistry , Ions/chemistry , Nitrogen/chemistry , Quantum Dots/chemistry , Spectrometry, Fluorescence/methods , Sulfur/chemistry
15.
Nanomaterials (Basel) ; 12(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35564286

ABSTRACT

Cu/CaO catalysts with fine-tuned Co-doping for excellent catalytic performance of furfural (FAL) hydrogenation to furfuryl alcohol (FOL) were synthesized by a facile wetness impregnation method. The optimal Co1.40Cu1/CaO catalyst, with a Co to Cu mole ratio of 1.40:1, exhibited a 100% FAL conversion with a FOL yield of 98.9% at 100 °C and 20 bar H2 pressure after 4 h. As gained from catalyst characterizations, Co addition could facilitate the reducibility of the CoCu system. Metallic Cu, Co-Cu alloys, and oxide species with CaO, acting as the major active components for the reaction, were formed after reduction at 500 °C. Additionally, this combination of Co and Cu elements could result in an improvement of catalyst textures when compared with the bare CaO. Smaller catalyst particles were formed after the addition of Co into Cu species. It was found that the addition of Co to Cu on the CaO support could fine-tune the appropriate acidic and basic sites to boost the FOL yield and selectivity with suppression of undesired products. These observations could confirm that the high efficiency and selectivity are mainly attributed to the synergistic effect between the catalytically active Co-Cu species and the CaO basic sites. Additionally, the FAL conversion and FOL yield insignificantly changed throughout the third consecutive run, confirming a high stability of the developed Co1.40Cu1/CaO catalyst.

16.
Sci Rep ; 12(1): 6250, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35428781

ABSTRACT

A series of activated carbons (ACs) derived from spent disposable wooden chopsticks was prepared via steam activation and used to separate carbon dioxide (CO2) from a CO2/hydrogen (H2) mixed gas at atmospheric pressure. A factorial design was employed to investigate the effects of the activation temperature and time as well as their interactions on the production yield of ACs and their CO2 adsorption capacity. The activation temperature exhibited a much higher impact on both the production yield and the CO2 adsorption capacity of ACs than the activation time. The interaction of both parameters did not significantly affect the yield of ACs, but did affect the CO2 adsorption capacity. The optimal preparation condition provided ACs with a desirable yield of around 23.18% and a CO2 adsorption capacity of 85.19 mg/g at 25 °C and 1 atm and consumed the total energy of 225.28 MJ/kg AC or 116.4 MJ/g-mol CO2. A H2 purity of greater than 96.8 mol% was achieved from a mixed gas with low CO2 concentration (< 20 mol%) during the first 3 min of adsorption and likewise around 90 mol% from a mixed gas with a high CO2 concentration (> 30 mol%) during the first 2 min. The CO2 adsorption on the as-prepared ACs proceeded dominantly via multilayer physical adsorption and was affected by both the surface area and micropore volume of the ACs. The adsorption capacity was diminished by around 18% after six adsorption/desorption cycles. The regeneration of the as-prepared chopstick-derived ACs can be easily performed via heating at a low temperature and ambient pressure, suggesting their potential application in the temperature swing adsorption process.

17.
Molecules ; 26(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34946525

ABSTRACT

Biomass valorization to building block chemicals in food and pharmaceutical industries has tremendously gained attention. To produce monophenolic compounds from palm empty fruit bunch (EFB), EFB was subjected to alkaline hydrothermal extraction using NaOH or K2CO3 as a promotor. Subsequently, EFB-derived lignin was subjected to an oxidative depolymerization using Cu(II) and Fe(III) mixed metal oxides catalyst supported on γ-Al2O3 or SiO2 as the catalyst in the presence of hydrogen peroxide. The highest percentage of total phenolic compounds of 63.87 wt% was obtained from microwave-induced oxidative degradation of K2CO3 extracted lignin catalyzed by Cu-Fe/SiO2 catalyst. Main products from the aforementioned condition included 27.29 wt% of 2,4-di-tert-butylphenol, 19.21 wt% of syringol, 9.36 wt% of acetosyringone, 3.69 wt% of acetovanillone, 2.16 wt% of syringaldehyde, and 2.16 wt% of vanillin. Although the total phenolic compound from Cu-Fe/Al2O3 catalyst was lower (49.52 wt%) compared with that from Cu-Fe/SiO2 catalyst (63.87 wt%), Cu-Fe/Al2O3 catalyst provided the greater selectivity of main two value-added products, syringol and acetosyrigone, at 54.64% and 23.65%, respectively (78.29% total selectivity of two products) from the NaOH extracted lignin. The findings suggested a promising method for syringol and acetosyringone production from the oxidative heterogeneous lignin depolymerization under low power intensity microwave heating within a short reaction time of 30 min.


Subject(s)
Acetophenones , Copper/chemistry , Iron/chemistry , Lignin/chemistry , Microwaves , Poaceae/chemistry , Pyrogallol/analogs & derivatives , Acetophenones/chemistry , Acetophenones/isolation & purification , Aluminum Oxide/chemistry , Catalysis , Oxidation-Reduction , Pyrogallol/chemistry , Pyrogallol/isolation & purification
18.
ACS Omega ; 6(21): 13779-13794, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34095670

ABSTRACT

Natural kaolin-based Ni catalysts have been developed for low-temperature CO2 methanation. The catalysts were prepared via a one-step co-impregnation of Ni and Ce onto a natural kaolin-derived metakaolin using a microwave-assisted hydrothermal method as an acid-/base-free synthesis method. The influences of microwave irradiation and Ce promotion on the catalytic enhancement including the CO2 conversion, CH4 selectivity, and CH4 yield were experimentally investigated by a catalytic test of as-prepared catalysts in a fixed-bed tubular reactor. The relationship between the catalyst properties and its methanation activities was revealed by various characterization techniques including X-ray fluorescence, X-ray diffraction, Brunauer-Emmett-Teller, scanning electron microscopy, selected area electron diffraction, transmission electron microscopy, elemental mapping, H2 temperature-programmed reduction, and X-ray absorption near-edge structure analyses. Among the two enhancement methods, microwave and Ce promotion, the microwave-assisted synthesis could produce a catalyst containing highly dispersed Ni particles with a smaller Ni crystallite size and higher catalyst reducibility, resulting in a higher CO2 conversion from 1.6 to 7.5% and a better CH4 selectivity from 76.3 to 79.9% at 300 °C. Meanwhile, the enhancement by Ce addition exhibited a great improvement on the catalyst activities. It was experimentally found that the CO2 conversion increased approximately 7-fold from 7.5 to 52.9%, while the CH4 selectivity significantly improved from 79.9 to 98.0% at 300 °C. Though the microwave-assisted synthesis could further improve the catalyst activities of Ce-promoted catalysts, the Ce addition exhibited a more prominent impact than the microwave enhancement. Cerium oxide (CeO2) improved the catalyst activities through mechanisms of higher CO2 adsorption capacity with its basic sites and the unique structure of CeO2 with a reversible valence change of Ce4+ and Ce3+ and high oxygen vacancies. However, it was found that the catalyst prepared by microwave-assisted synthesis and Ce promotion proved to be the optimum catalyst in this study. Therefore, the present work demonstrated the potential to synthesize a nickel-based catalyst with improved catalytic activities by adding a small amount of Ce as a catalytic promoter and employing microwave irradiation for improving the Ni dispersion.

19.
ACS Omega ; 6(4): 2999-3016, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33553918

ABSTRACT

Hydrodeoxygenation (HDO) of bio-oil derived from liquefaction of a palm empty fruit bunch (EFB) in glycerol was investigated. To enhance the heating value and reduce the oxygen content of upgraded bio-oil, hydrodeoxygenation of light bio-oil over Ni- and Co-based catalysts on an Al2O3 support was performed in a rotating-bed reactor. Two consecutive steps were conducted to produce bio-oil from EFB including (1) microwave-assisted wet torrefaction of EFB and (2) solvothermolysis liquefaction of treated EFB in a Na2CO3/glycerol system. The HDO of as-prepared bio-oil was subsequently performed in a unique design reactor possessing a rotating catalyst bed for efficient interaction of a catalyst with bio-oil and facile separation of the catalyst from upgraded bio-oil after the reaction. The reaction was carried out in the presence of each mono- or bimetallic catalyst, namely, Co/Al2O3, Ni/Al2O3, NiMo/Al2O3, and CoMo/Al2O3, packed in the rotating-mesh host with a rotation speed of 250 rpm and kept at 300 and 350 °C, 2 MPa hydrogen for 1 h. From the results, the qualities of upgraded bio-oil were substantially improved for all catalysts tested in terms of oxygen reduction and increased high heating value (HHV). Particularly, the NiMo/Al2O3 catalyst exhibited the most promising catalyst, providing favorable bio-oil yield and HHV. Remarkably greater energy ratios and carbon recovery together with high H/O, C/O, and H/C ratios were additionally achieved from the NiMo/Al2O3 catalyst compared with other catalysts. Cyclopentanone and cyclopentene were the main olefins found in hydrodeoxygenated bio-oil derived from liquefied EFB. It was observed that cyclopentene was first generated and subsequently converted to cyclopentanone under the hydrogenation reaction. These compounds can be further used as a building block in the synthesis of jet-fuel range cycloalkanes.

20.
ACS Omega ; 5(12): 6956-6966, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32258932

ABSTRACT

In the present work, the solvent-free hydrodeoxygenation of palm oil as a representative triglyceride model compound to diesel-like hydrocarbons was evaluated in a batch reactor using Pt-decorated MoO2 catalysts. The catalysts with various Pt loadings (0.5-3%) were synthesized by an incipient wetness impregnation method. The metallic Pt and MoO2 phases were detected in the XRD patterns of as-prepared catalysts after the reaction and acted as active components for the deoxygenation reactions. The XPS experiments confirmed the existence of metallic Pt and PtO x species. The XANES investigation of Mo L3-edge spectra elucidated a change in the valence state by the transformation of MoO3 into MoO2 species after the deoxygenation reaction. The TEM observation revealed the formation of Pt nanoparticles in the range of 1-3 nm decorated on MoO2 species. The number of acid sites increased with stronger metal-support interactions on increasing the Pt loading. The catalytic performance of the MoO2 catalyst significantly improved with a small amount of Pt decoration. However, the further increase in Pt loading did not relatively increase the deoxygenation activity due to the formation of the agglomerated Pt particles. The high performance of the decorated catalysts could be attributed to the moderate acidity from the Pt dispersed on MoO2 toward decarbonylation and decarboxylation reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...