Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurogastroenterol Motil ; 26(1): 98-107, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24329946

ABSTRACT

BACKGROUND: Normal gastrointestinal function depends on an intact and coordinated enteric nervous system (ENS). While the ENS is formed during fetal life, plasticity persists in the postnatal period during which the gastrointestinal tract is colonized by bacteria. We tested the hypothesis that colonization of the bowel by intestinal microbiota influences the postnatal development of the ENS. METHODS: The development of the ENS was studied in whole mount preparations of duodenum, jejunum, and ileum of specific pathogen-free (SPF), germ-free (GF), and altered Schaedler flora (ASF) NIH Swiss mice at postnatal day 3 (P3). The frequency and amplitude of circular muscle contractions were measured in intestinal segments using spatiotemporal mapping of video recorded spontaneous contractile activity with and without exposure to lidocaine and N-nitro-L-arginine (NOLA). KEY RESULTS: Immunolabeling with antibodies to PGP9.5 revealed significant abnormalities in the myenteric plexi of GF jejunum and ileum, but not duodenum, characterized by a decrease in nerve density, a decrease in the number of neurons per ganglion, and an increase in the proportion of myenteric nitrergic neurons. Frequency of amplitude of muscle contractions were significantly decreased in the jejunum and ileum of GF mice and were unaffected by exposure to lidocaine, while NOLA enhanced contractile frequency in the GF jejunum and ileum. CONCLUSIONS & INFERENCES: These findings suggest that early exposure to intestinal bacteria is essential for the postnatal development of the ENS in the mid to distal small intestine. Future studies are needed to investigate the mechanisms by which enteric microbiota interact with the developing ENS.


Subject(s)
Duodenum/growth & development , Enteric Nervous System/growth & development , Gastrointestinal Motility/physiology , Ileum/growth & development , Jejunum/growth & development , Microbiota/physiology , Animals , Animals, Newborn , Duodenum/cytology , Duodenum/microbiology , Enteric Nervous System/cytology , Enteric Nervous System/microbiology , Female , Ileum/cytology , Ileum/microbiology , Jejunum/cytology , Jejunum/microbiology , Mice , Pregnancy
2.
Neurogastroenterol Motil ; 23(10): 898-911, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21851506

ABSTRACT

BACKGROUND: The vagus nerve is the major neural connection between the gastrointestinal tract and the central nervous system. During fetal development, axons from the cell bodies of the nodose ganglia and the dorsal motor nucleus grow into the gut to find their enteric targets, providing the vagal sensory and motor innervations respectively. Vagal sensory and motor axons innervate selective targets, suggesting a role for guidance cues in the establishment of the normal pattern of enteric vagal innervation. PURPOSE: This review explores known molecular mechanisms that guide vagal innervation in the gastrointestinal tract. Guidance and growth factors, such as netrin-1 and its receptor, deleted in colorectal cancer, extracellular matrix molecules, such as laminin-111, and members of the neurotrophin family of molecules, such as brain-derived neurotrophic factor have been identified as mediating the guidance of vagal axons to the fetal mouse gut. In addition to increasing our understanding of the development of enteric innervation, studies of vagal development may also reveal clinically relevant insights into the underlying mechanisms of vago-vagal communication with the gastrointestinal tract.


Subject(s)
Enteric Nervous System/physiology , Gastrointestinal Tract/innervation , Neurogenesis/physiology , Vagus Nerve/physiology , Animals , Humans
3.
J Histochem Cytochem ; 46(11): 1223-31, 1998 Nov.
Article in English | MEDLINE | ID: mdl-9774621

ABSTRACT

There is increasing interest in localizing nerves in the intestine, especially specific populations of nerves. At present, the usual histochemical marker for cholinergic nerves in tissue sections is acetylcholinesterase activity. However, such techniques are applicable only to frozen sections and have uncertain specificity. Choline acetyltransferase (ChAT) is also present in cholinergic nerves, and we therefore aimed to establish a paraffin section immunocytochemical technique using an anti-ChAT antibody. Monoclonal anti-choline acetyltransferase (1.B3.9B3) and a biotin-streptavidin detection system were used to study the distribution of ChAT immunoreactivity (ChAT IR) in paraffin-embedded normal and diseased gastrointestinal tracts from both rats and humans. Optimal staining was seen after 6-24 hr of fixation in neutral buffered formalin and overnight incubation in 1 microgram/ml of 1.B3.9B3, with a similar distribution to that seen in frozen sections. In the rat diaphragm (used as a positive control), axons and motor endplates were ChAT IR. Proportions of ganglion cells and nerve fibers in the intramural plexi of both human and rat gastrointestinal tracts were also ChAT IR, as well as extrinsic nerve bundles in aganglionic segments of Hirschsprung's disease. Mucosal cholinergic nerves, however, were not visualized. In addition, non-neuronal cells such as endothelium, epithelium, and inflammatory cells were ChAT IR. We were able to localize ChAT to nerves in formalin-fixed, paraffin-embedded sections. The presence of ChAT IR in non-neuronal cells indicates that this method should be used in conjunction with other antibodies. Nevertheless, it proves to be a useful technique for studying cholinergic neuronal distinction in normal tissues and pathological disorders.


Subject(s)
Choline O-Acetyltransferase/metabolism , Intestinal Diseases/metabolism , Intestinal Mucosa/metabolism , Animals , Esophagus/metabolism , Hirschsprung Disease/metabolism , Humans , Immunoenzyme Techniques , Intestinal Diseases/parasitology , Nippostrongylus , Paraffin Embedding , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Rats, Wistar , Strongylida Infections/metabolism , Tissue Distribution , Trichinellosis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...