Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
JOR Spine ; 7(2): e1335, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38741919

ABSTRACT

Background: In vivo quantification of the structure-function relationship of the intervertebral disc (IVD) via quantitative MRI has the potential to aid objective stratification of disease and evaluation of restorative therapies. Magnetic resonance elastography (MRE) is an imaging technique that assesses tissue shear properties and combined with quantitative MRI metrics reflective of composition can inform structure-function of the IVD. The objectives of this study were to (1) compare MRE- and rheometry-derived shear modulus in agarose gels and nucleus pulposus (NP) tissue and (2) correlate MRE and rheological measures of NP tissue with composition and quantitative MRI. Method: MRE and MRI assessment (i.e., T1ρ and T2 mapping) of agarose samples (2%, 3%, and 4% (w/v); n = 3-4/%) and of bovine caudal IVDs after equilibrium dialysis in 5% or 25% PEG (n = 13/PEG%) was conducted. Subsequently, agarose and NP tissue underwent torsional mechanical testing consisting of a frequency sweep from 1 to 100 Hz at a rotational strain of 0.05%. NP tissue was additionally evaluated under creep and stress relaxation conditions. Linear mixed-effects models and univariate regression analyses evaluated the effects of testing method, %agarose or %PEG, and frequency, as well as correlations between parameters. Results: MRE- and rheometry-derived shear moduli were greater at 100 Hz than at 80 Hz in all agarose and NP tissue samples. Additionally, all samples with lower water content had higher complex shear moduli. There was a significant correlation between MRE- and rheometry-derived modulus values for homogenous agarose samples. T1ρ and T2 relaxation times for agarose and tissue were negatively correlated with complex shear modulus derived from both techniques. For NP tissue, shear modulus was positively correlated with GAG/wet-weight and negatively correlated with %water content. Conclusion: This work demonstrates that MRE can assess hydration-induced changes in IVD shear properties and further highlights the structure-function relationship between composition and shear mechanical behaviors of NP tissue.

2.
J Biomech ; 164: 111965, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38354514

ABSTRACT

Nucleus pulposus (NP) tissue in the intervertebral disc (IVD) is a viscoelastic material exhibiting both solid- and fluid-like mechanical behaviors. Advances in viscoelastic models incorporating fractional calculus, such as the Fractional Zener (FZ) model, have potential to describe viscoelastic behaviors. The objectives of this study were to determine whether the FZ model can accurately describe the shear viscoelastic properties of NP tissue and determine if the fractional order (α) is related to tissue hydration. 30 caudal IVDs underwent equilibrium dialysis in 5% or 25% polyethylene glycol solutions to alter tissue hydration. Excised NP tissue underwent stress relaxation testing in shear and unconfined compression. Stress relaxation data was fitted to the FZ model to obtain viscoelastic properties. In both loading modes, the initial modulus was greater for the less hydrated 25% equilibrated samples compared to 5% with no change in the equilibrium modulus. Samples with lower water content (25% samples) had shorter relaxation times in shear and longer time constants in compression, highlighting the different interactions between the fluid and solid matrix in loading modes. Samples with lower water content had α values closer to 0, indicating that less hydrated samples behaved more solid-like on the viscoelastic spectrum. Tissue hydration correlated with α values for 25% samples in shear. This study demonstrates that the FZ model may be used to describe IVD tissue behavior under both loading modes; however, the greatest utility of the FZ model is in describing flow-independent shear behaviors, and α may inform tissue hydration in shear.


Subject(s)
Intervertebral Disc , Nucleus Pulposus , Elasticity , Stress, Mechanical , Water
3.
J Appl Clin Med Phys ; 24(1): e13843, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36385457

ABSTRACT

PURPOSE: To determine the magnitude of MRI image distortion based on 6 consecutive years of annual quality assurances/measurements on 14 MRI scanners used for radiation therapy and to provide evidence for the inclusion of additional margin for treatment planning. METHODS AND MATERIALS: We used commercial MRI image phantoms to quantitatively study the MRI image distortion over period of 6 years for up to 14 1.5 and 3 T MRI scanners that could potentially be used to provide MRI images for treatment planning. With the phantom images collected from 2016 to 2022, we investigated the MRI image distortion, the dependence of distortion on the distance from the imaging isocenter, and the possible causes of large distortion discovered. RESULTS: MRI image distortion increases with the distance from the imaging isocenter. For a region of interest (ROI) with a radius of 100 mm centered at the isocenter, the mean magnitude of distortion for all MRI scanners is 0.44 ± 0.18 mm $0.44 \pm 0.18\;{\rm{mm}}$ , and the maximum distortion varies from 0.52 to 1.31 mm $0.52\;{\rm{to}}\;1.31\;{\rm{mm}}$ depending on MRI scanners. For an ROI with a radius of 200 mm centered at the isocenter, the mean magnitude of distortion increases to 0.84 ± 0.45 mm $0.84 \pm 0.45\;{\rm{mm}}$ , and the range of the maximum distortion increases to 1.92 - 5.03 mm $1.92 - 5.03\;{\rm{mm}}$ depending on MRI scanners. The distortion could reach 2 mm at 150 mm from the isocenter. CONCLUSION: An additional margin to accommodate image distortion should be considered for treatment planning. Imaging with proper patient alignment to the isocenter is vital to reducing image distortion. We recommend performing image distortion checks annually and after major upgrade on MRI scanners.


Subject(s)
Radiotherapy, Image-Guided , Humans , Radiotherapy, Image-Guided/methods , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Magnetic Resonance Imaging/methods
4.
Radiology ; 304(3): 721-729, 2022 09.
Article in English | MEDLINE | ID: mdl-35638926

ABSTRACT

Background Abdominal aortic aneurysm (AAA) diameter remains the standard clinical parameter to predict growth and rupture. Studies suggest that using solely AAA diameter for risk stratification is insufficient. Purpose To evaluate the use of aortic MR elastography (MRE)-derived AAA stiffness and stiffness ratio at baseline to identify the potential for future aneurysm rupture or need for surgical repair. Materials and Methods Between August 2013 and March 2019, 72 participants with AAA and 56 healthy participants were enrolled in this prospective study. MRE examinations were performed to estimate AAA stiffness and the stiffness ratio between AAA and its adjacent remote normal aorta. Two Cox proportional hazards models were used to assess AAA stiffness and stiffness ratio for predicting aneurysmal events (subsequent repair, rupture, or diameter >5.0 cm). Log-rank tests were performed to determine a critical stiffness ratio suggesting high-risk AAAs. Baseline AAA stiffness and stiffness ratio were studied using Wilcoxon rank-sum tests between participants with and without aneurysmal events. Spearman correlation was used to investigate the relationship between stiffness and other potential imaging markers. Results Seventy-two participants with AAA (mean age, 71 years ± 9 [SD]; 56 men and 16 women) and 56 healthy participants (mean age, 42 years ± 16; 27 men and 29 women) were evaluated. In healthy participants, aortic stiffness positively correlated with age (ρ = 0.44; P < .001). AAA stiffness (event group [n = 21], 50.3 kPa ± 26.5 [SD]; no-event group [n = 21], 86.9 kPa ± 52.6; P = .01) and the stiffness ratio (event group, 0.7 ± 0.4; no-event group, 2.0 ± 1.4; P < .001) were lower in the event group than the no-event group at a mean follow-up of 449 days. AAA stiffness did not correlate with diameter in the event group (ρ = -0.06; P = .68) or the no-event group (ρ = -0.13; P = .32). AAA stiffness was inversely correlated with intraluminal thrombus area (ρ = -0.50; P = .01). Conclusion Lower abdominal aortic aneurysm stiffness and stiffness ratio measured with use of MR elastography was associated with aneurysmal events at a 15-month follow-up. © RSNA, 2022 See also the editorial by Sakuma in this issue.


Subject(s)
Aortic Aneurysm, Abdominal , Aortic Rupture , Elasticity Imaging Techniques , Thrombosis , Adult , Aged , Aged, 80 and over , Aorta, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/complications , Female , Humans , Male , Middle Aged , Proportional Hazards Models , Prospective Studies , Risk Factors , Thrombosis/complications
5.
J Magn Reson Imaging ; 56(6): 1722-1732, 2022 12.
Article in English | MEDLINE | ID: mdl-35289470

ABSTRACT

BACKGROUND: Magnetic resonance elastography (MRE) is an imaging technique that can noninvasively assess the shear properties of the intervertebral disc (IVD). Unlike the standard gradient recalled echo (GRE) MRE technique, a spin-echo echo-planar imaging (SE-EPI) sequence has the potential to improve imaging efficiency and patient compliance. PURPOSE: To validate the use of an SE-EPI sequence for MRE of the IVD compared against the standard GRE sequence. STUDY TYPE: Cross-over. SUBJECTS: Twenty-eight healthy volunteers (15 males and 13 females, age range: 19-55). FIELD STRENGTH/SEQUENCE: 3 T; GRE, SE-EPI with breath holds (SE-EPI-BH) and SE-EPI with free breathing (SE-EPI-FB) MRE sequences. ASSESSMENT: MRE-derived shear stiffnesses were calculated via principal frequency analysis. SE-EPI derived shear stiffness and octahedral shear strain signal-to-noise ratios (OSS-SNR) were compared against those derived using the GRE sequence. The reproducibility and repeatability of SE-EPI stiffness measurements were determined. Shear stiffness was evaluated in the nucleus pulposus (NP) and annulus fibrosus (AF) regions of the disc. Scan times between sequences were compared. STATISTICAL TESTS: Linear mixed models, Bland-Altman plots, and Lin's concordance correlation coefficients (CCCs) were used with P < 0.05 considered statistically significant. RESULTS: Good correlation was observed between shear stiffnesses derived from the SE-EPI sequences with those derived from the GRE sequence with CCC values greater than 0.73 and 0.78 for the NP and AF regions, respectively. OSS-SNR was not significantly different between GRE and SE-EPI sequences (P > 0.05). SE-EPI sequences generated highly reproducible and repeatable stiffness measurements with CCC values greater than 0.97 in the NP and AF regions and reduced scan time by at least 51% compared to GRE. SE-EPI-BH and SE-EPI-FB stiffness measurements were similar with CCC values greater than 0.98 for both regions. DATA CONCLUSION: SE-EPI-based MRE-derived stiffnesses were highly reproducible and repeatable and correlated with current standard GRE MRE-derived stiffness estimates while reducing scan times. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.


Subject(s)
Elasticity Imaging Techniques , Intervertebral Disc , Male , Female , Humans , Young Adult , Adult , Middle Aged , Elasticity Imaging Techniques/methods , Echo-Planar Imaging/methods , Reproducibility of Results , Signal-To-Noise Ratio , Intervertebral Disc/diagnostic imaging , Magnetic Resonance Imaging/methods
6.
NMR Biomed ; 35(6): e4685, 2022 06.
Article in English | MEDLINE | ID: mdl-34967060

ABSTRACT

Cardiac diffusion tensor imaging (DTI) is an emerging technique for the in vivo characterisation of myocardial microstructure, and there is a growing need for its validation and standardisation. We sought to establish the accuracy, precision, repeatability and reproducibility of state-of-the-art pulse sequences for cardiac DTI among 10 centres internationally. Phantoms comprising 0%-20% polyvinylpyrrolidone (PVP) were scanned with DTI using a product pulsed gradient spin echo (PGSE; N = 10 sites) sequence, and a custom motion-compensated spin echo (SE; N = 5) or stimulated echo acquisition mode (STEAM; N = 5) sequence suitable for cardiac DTI in vivo. A second identical scan was performed 1-9 days later, and the data were analysed centrally. The average mean diffusivities (MDs) in 0% PVP were (1.124, 1.130, 1.113) x 10-3  mm2 /s for PGSE, SE and STEAM, respectively, and accurate to within 1.5% of reference data from the literature. The coefficients of variation in MDs across sites were 2.6%, 3.1% and 2.1% for PGSE, SE and STEAM, respectively, and were similar to previous studies using only PGSE. Reproducibility in MD was excellent, with mean differences in PGSE, SE and STEAM of (0.3 ± 2.3, 0.24 ± 0.95, 0.52 ± 0.58) x 10-5  mm2 /s (mean ± 1.96 SD). We show that custom sequences for cardiac DTI provide accurate, precise, repeatable and reproducible measurements. Further work in anisotropic and/or deforming phantoms is warranted.


Subject(s)
Diffusion Tensor Imaging , Heart , Anisotropy , Diffusion Tensor Imaging/methods , Heart/diagnostic imaging , Phantoms, Imaging , Reproducibility of Results
7.
NMR Biomed ; 34(1): e4420, 2021 01.
Article in English | MEDLINE | ID: mdl-33021342

ABSTRACT

INTRODUCTION: Magnetic resonance elastography (MRE)-derived aortic stiffness is a potential biomarker for multiple cardiovascular diseases. Currently, gradient-recalled echo (GRE) MRE is a widely accepted technique to estimate aortic stiffness. However, multi-slice GRE MRE requires multiple breath-holds (BHs), which can be challenging for patients who cannot consistently hold their breath. The aim of this study was to investigate the feasibility of a multi-slice spin-echo echo-planar imaging (SE-EPI) MRE sequence for quantifying in vivo aortic stiffness using a free-breathing (FB) protocol and a single-BH protocol. METHOD: On Scanner 1, 25 healthy subjects participated in the validation of FB SE-EPI against FB GRE. On Scanner 2, another 15 healthy subjects were recruited to compare FB SE-EPI with single-BH SE-EPI. Among all volunteers, five participants were studied on both scanners to investigate the inter-scanner reproducibility of FB SE-EPI aortic MRE. Bland-Altman analysis, Lin's concordance correlation coefficient (LCCC) and coefficient of variation (COV) were evaluated. The phase-difference signal-to-noise ratios (PD SNR) were compared. RESULTS: Aortic MRE using FB SE-EPI and FB GRE yielded similar stiffnesses (paired t-test, P = 0.19), with LCCC = 0.97. The FB SE-EPI measurements were reproducible (intra-scanner LCCC = 0.96) and highly repeatable (LCCC = 0.99). The FB SE-EPI MRE was also reproducible across different scanners (inter-scanner LCCC = 0.96). Single-BH SE-EPI scans yielded similar stiffness to FB SE-EPI scans (LCCC = 0.99) and demonstrated a low COV of 2.67% across five repeated measurements. CONCLUSION: Multi-slice SE-EPI aortic MRE using an FB protocol or a single-BH protocol is reproducible and repeatable with advantage over multi-slice FB GRE in reducing acquisition time. Additionally, FB SE-EPI MRE provides a potential alternative to BH scans for patients who have challenges in holding their breath.


Subject(s)
Aorta, Abdominal/diagnostic imaging , Cardiac-Gated Imaging Techniques/methods , Elasticity Imaging Techniques/methods , Magnetic Resonance Imaging/methods , Vascular Stiffness , Aorta, Abdominal/physiology , Cardiac-Gated Imaging Techniques/instrumentation , Echo-Planar Imaging/instrumentation , Echo-Planar Imaging/methods , Elasticity Imaging Techniques/instrumentation , Feasibility Studies , Humans , Magnetic Resonance Imaging/instrumentation , Reference Values , Reproducibility of Results , Respiration , Signal-To-Noise Ratio
8.
NMR Biomed ; 33(4): e4237, 2020 04.
Article in English | MEDLINE | ID: mdl-31889353

ABSTRACT

Stiffness plays an important role in diagnosing renal fibrosis. However, kidney stiffness is altered by perfusion changes in many kidney diseases. Therefore, the aim of the current study is to determine the correlation of kidney stiffness with water intake. We hypothesize that kidney stiffness will increase with 1 L of water intake due to increased water perfusion to the kidneys. Additionally, stiffness of the kidneys will correlate with apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values before and after water intake. A 3 T MRI scanner was used to perform magnetic resonance elastography and diffusion tensor imaging of the kidneys on 24 healthy subjects (age range: 22-66 years) before and after water intake of 1 L. A 3D T1-weighted bladder scan was also performed to measure bladder volume before and after water intake. A paired t-test was performed to evaluate the effect of water intake on the stiffness of kidneys, in addition to bladder volume. A Spearman correlation test was performed to determine the association between stiffness, bladder volume, ADC and FA values of both kidneys before and after water intake. The results show a significant increase in stiffness in different regions of the kidney (ie, percentage increase ranged from 3.6% to 7.5%) and bladder volume after water intake (all P < 0.05). A moderate significant negative correlation was observed between change in kidney stiffness and bladder volume (concordance correlation coefficient = -0.468, P < 0.05). No significant correlation was observed between stiffness and ADC or FA values before and after water intake in both kidneys (P > 0.05). Water intake caused a significant increase in the stiffness of the kidneys. The negative correlation between the change in kidney stiffness and bladder volume, before and after water intake, indicates higher perfusion pressure in the kidneys, leading to increased stiffness.


Subject(s)
Elasticity Imaging Techniques , Kidney/diagnostic imaging , Kidney/physiology , Magnetic Resonance Imaging , Perfusion , Water/chemistry , Adult , Aged , Biomechanical Phenomena , Diffusion Tensor Imaging , Female , Humans , Male , Middle Aged , Spin Labels , Young Adult
9.
NMR Biomed ; 32(11): e4141, 2019 11.
Article in English | MEDLINE | ID: mdl-31329347

ABSTRACT

The purpose of this study is 1) to demonstrate reproducibility of spin echo-echo planar imaging (SE-EPI) magnetic resonance elastography (MRE) to estimate kidney stiffness; and 2) to compare SE-EPI MRE and gradient recalled echo (GRE) MRE-derived stiffness estimations in various anatomical regions of the kidney. Kidney MRE was performed on 33 healthy subjects (8 for SE-EPI MRE reproducibility and 25 for comparison with GRE MRE; age range: 22-66 years) in a 3 T MRI scanner. To demonstrate SE-EPI MRE reproducibility, subjects were scanned for the first scan and then asked to leave the scan room and repositioned again for the second (repeat) scan. Similar set-up was used for GRE MRE as well. The displacement data was then processed to obtain overall stiffness estimates of the kidney. Concordance correlation analyses were performed to determine SE-EPI MRE reproducibility and agreement between GRE MRE and SE-EPI MRE derived stiffness. A high concordance correlation (ρc  = 0.95; p-value<0.0001) was obtained for SE-EPI MRE reproducibility. Good concordance correlation was observed (ρc  = 0.84; p < 0.0001 for both kidneys, ρc  = 0.91; p < 0.0001 for right kidney and ρc  = 0.78; p < 0.0001 for left kidney) between GRE MRE and SE-EPI MRE derived stiffness measurements. Paired t-test results showed that stiffness value of medulla was significantly (p < 0.0001) greater than cortex using SE-EPI MRE as well as GRE MRE. SE-EPI MRE was reproducible and good agreement was observed in MRE-derived stiffness measurements obtained using SE-EPI and GRE sequences. Therefore, SE-EPI can be used for kidney MRE applications.


Subject(s)
Elasticity Imaging Techniques , Kidney/diagnostic imaging , Magnetic Resonance Spectroscopy , Adult , Aged , Echo-Planar Imaging , Humans , Kidney/physiopathology , Middle Aged , Reproducibility of Results , Spin Labels , Young Adult
10.
Magn Reson Med ; 82(2): 671-679, 2019 08.
Article in English | MEDLINE | ID: mdl-30957304

ABSTRACT

PURPOSE: Noninvasive measurement of mechanical properties of brain tissue using magnetic resonance elastography (MRE) has been a promising method for investigating neurologic disorders such as multiple sclerosis, hydrocephalus, and Alzheimer's. However, because of the regional and directional dependency of brain stiffness, estimating anisotropic stiffness is important. This study investigates isotropic and anisotropic stiffness as a function of age as well as the correlation between isotropic and anisotropic stiffness. METHODS: MRE and diffusion tensor imaging (DTI) were performed on 28 healthy subjects with age ranges between 18-62 y. Isotropic and anisotropic stiffness was measured and compared with age for different regions of interest such as the thalamus, corpus callosum, gray matter, white matter, and whole brain. RESULTS: Isotropic stiffness in gray matter (rs = -0.57; P = 0.001) showed a significant decrease with age. Anisotropic stiffness in gray matter showed a significant decrease with age in C11 through C66 and in the thalamus, only in C33 . Between anisotropic and isotropic stiffness, gray matter showed a significant positive correlation in C11 through C66 , C22 and C66 showed a significant negative correlation in the thalamus and whole brain, and C44 showed a negative correlation in the corpus callosum. No significant difference between genders was observed in any measurements. CONCLUSION: This study demonstrated a change in isotropic and anisotropic stiffness with age in different regions of the brain along with a correlation of anisotropic stiffness to isotropic stiffness.


Subject(s)
Brain/diagnostic imaging , Elasticity Imaging Techniques/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Adolescent , Adult , Aging/physiology , Anisotropy , Elasticity Imaging Techniques/instrumentation , Equipment Design , Female , Humans , Magnetic Resonance Imaging/instrumentation , Male , Middle Aged , Young Adult
11.
Clin Imaging ; 51: 114-122, 2018.
Article in English | MEDLINE | ID: mdl-29459315

ABSTRACT

This study determines the reproducibility of magnetic resonance elastography (MRE) derived brain stiffness in normal volunteers and compares it against pseudotumor patients before and after lumbar puncture (LP). MRE was performed on 10 normal volunteers for reproducibility and 14 pseudotumor patients before and after LP. During LP, opening and closing cerebrospinal fluid (CSF) pressures were recorded before and after removal of CSF and correlated to brain stiffness. Stiffness reproducibility was observed (r > 0.78; p < 0.008). Whole brain opening LP stiffness was significantly (p = 0.04) higher than normals, but no significant difference (p = 0.11) in closing LP measurements. No significant correlation was observed between opening and closing pressure and brain stiffness.


Subject(s)
Brain/diagnostic imaging , Intracranial Pressure/physiology , Magnetic Resonance Imaging/methods , Pseudotumor Cerebri/diagnostic imaging , Adult , Female , Humans , Male , Pseudotumor Cerebri/physiopathology , Reproducibility of Results , Severity of Illness Index , Young Adult
12.
Radiology ; 285(1): 167-175, 2017 10.
Article in English | MEDLINE | ID: mdl-28471737

ABSTRACT

Purpose To determine the repeatability of magnetic resonance (MR) elastography-derived shear stiffness measurements of the intervertebral disc (IVD) taken throughout the day and their relationship with IVD degeneration and subject age. Materials and Methods In a cross-sectional study, in vivo lumbar MR elastography was performed once in the morning and once in the afternoon in 47 subjects without current low back pain (IVDs = 230; age range, 20-71 years) after obtaining written consent under approval of the institutional review board. The Pfirrmann degeneration grade and MR elastography-derived shear stiffness of the nucleus pulposus and annulus fibrosus regions of all lumbar IVDs were assessed by means of principal frequency analysis. One-way analysis of variance, paired t tests, concordance and Bland-Altman tests, and Pearson correlations were used to evaluate degeneration, diurnal changes, repeatability, and age effects, respectively. Results There were no significant differences between morning and afternoon shear stiffness across all levels and there was very good technical repeatability between the morning and afternoon imaging results for both nucleus pulposus (R = 0.92) and annulus fibrosus (R = 0.83) regions. There was a significant increase in both nucleus pulposus and annulus fibrosus MR elastography-derived shear stiffness with increasing Pfirrmann degeneration grade (nucleus pulposus grade 1, 12.5 kPa ± 1.3; grade 5, 16.5 kPa ± 2.1; annulus fibrosus grade 1, 90.4 kPa ± 9.3; grade 5, 120.1 kPa ± 15.4), and there were weak correlations between shear stiffness and age across all levels (R ≤ 0.32). Conclusion Our results demonstrate that MR elastography-derived shear stiffness measurements are highly repeatable, weakly correlate with age, and increase with advancing IVD degeneration. These results suggest that MR elastography-derived shear stiffness may provide an objective biomarker of the IVD degeneration process. © RSNA, 2017 Online supplemental material is available for this article.


Subject(s)
Elasticity Imaging Techniques/methods , Intervertebral Disc Degeneration/diagnostic imaging , Intervertebral Disc/diagnostic imaging , Magnetic Resonance Imaging/methods , Adult , Aged , Biomarkers , Cross-Sectional Studies , Humans , Image Interpretation, Computer-Assisted , Intervertebral Disc/physiopathology , Intervertebral Disc Degeneration/physiopathology , Middle Aged , Young Adult
13.
J Magn Reson Imaging ; 45(5): 1379-1384, 2017 05.
Article in English | MEDLINE | ID: mdl-27779802

ABSTRACT

PURPOSE: Previous studies of breast MR elastography (MRE) evaluated the technique at magnetic field strengths of 1.5 Tesla (T) with the breast in contact with the driver. The aim of this study is to evaluate breast stiffness measurements and their reproducibility using a soft sternal driver at 3T and compare the results with qualitative measures of breast density. MATERIALS AND METHODS: Twenty-two healthy volunteers each underwent two separate breast MRE scans in a 3T MRI. MRE vibrations were introduced into the breasts at 60 Hz using a soft sternal driver and axial slices were collected using a gradient echo MRE sequence. Mean stiffness measurements were calculated for each volunteer as well as a measure of reproducibility using concordance correlation between scans. Mean stiffness values for each volunteer were assessed and related to amounts of fibroglandular tissue (i.e., breast lobules, ducts, and fibrous connective tissue). RESULTS: The stiffness values were reproducible with a significant P-value < 0.0001 between two scans with concordance correlation of 0.87 and 0.91 for center slice and grouping all slices, respectively. Volunteers with dense breasts (i.e., higher grades of fibroglandular tissue) had mean stiffness values of 0.96 kPa (center slice) and 0.92 kPa (all slices) while those without dense breasts had mean stiffness values of 0.85 kPa (center slice) and 0.83 kPa (all slices) (P ≤ 0.05). CONCLUSION: Breast MRE is a reproducible technique at 3T using a soft sternal driver. Dense breasts had significantly higher stiffness measurements compared with nondense breasts. LEVEL OF EVIDENCE: 2 J. MAGN. RESON. IMAGING 2017;45:1379-1384.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast/diagnostic imaging , Elasticity Imaging Techniques/methods , Magnetic Resonance Imaging , Algorithms , Elastic Modulus , Female , Healthy Volunteers , Humans , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted , Reproducibility of Results
14.
Magn Reson Imaging ; 34(1): 26-34, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26471513

ABSTRACT

INTRODUCTION: Myocardial stiffness is an important determinant of cardiac function and is currently invasively and indirectly assessed by catheter angiography. This study aims to demonstrate the feasibility of quantifying right ventricular (RV) stiffness noninvasively using cardiac magnetic resonance elastography (CMRE) in dogs with severe congenital pulmonary valve stenosis (PVS) causing RV hypertrophy, and compare it to remote myocardium in the left ventricle (LV). Additionally, correlations between stiffness and selected pathophysiologic indicators from transthoracic echocardiography (TTE) and cardiac magnetic resonance imaging were explored. METHODS: In-vivo CMRE was performed on nine dogs presenting severe congenital PVS using a 1.5T MRI scanner. T1-MOLLI, T2-prepared-bSSFP, gated-cine GRE-MRE and LGE (PSIR) sequences were used to acquire a basal short-axis slice. RV and LV-free-wall (FW) stiffness measurements were compared against each other and also correlated to ventricular mass, RV and LV FW thickness, T1 and T2 relaxation times, and extracellular volume fraction (ECV). Peak transpulmonary pressure gradient and myocardial strain were also acquired on eight dogs by TTE and correlated to RV-FW systolic stiffness. Potential correlations were evaluated by Spearman's rho (rs). RESULTS: RV-FW stiffness was found to be significantly higher than the LV-FW stiffness both during end-systole (ES) (p=0.002) and end-diastole (ED) (p=0.029). Significant correlations were observed between RV-FW ES and LV-FW ED stiffness versus ECV (rs=0.75; p-value=0.05). Non-significant moderate correlations were found between LV-FW ES (rs=0.54) and RV-FW ED (rs=0.61) stiffness versus ECV. Furthermore, non-significant correlations were found between RV or LV-FW stiffness and the remaining variables (rs<0.54; p-value>0.05). CONCLUSION: This study demonstrates the feasibility of determining RV stiffness. The positive correlations between stiffness and ECV might indicate some interdependence between stiffness and myocardial extracellular matrix alterations. However, further studies are warranted to validate our initial observations.


Subject(s)
Elastic Modulus , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Hypertrophy, Right Ventricular/pathology , Hypertrophy, Right Ventricular/physiopathology , Image Interpretation, Computer-Assisted/methods , Algorithms , Animals , Dogs , Feasibility Studies , Humans , Image Enhancement/methods , Male , Pilot Projects , Reproducibility of Results , Sensitivity and Specificity , Stress, Mechanical
15.
Magn Reson Med ; 75(4): 1586-93, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26010456

ABSTRACT

PURPOSE: To assess reproducibility in measuring left ventricular (LV) myocardial stiffness in volunteers throughout the cardiac cycle using MR elastography (MRE) and to determine its correlation with age. METHODS: Cardiac MRE (CMRE) was performed on 29 normal volunteers, with ages ranging from 21 to 73 years. For assessing reproducibility of CMRE-derived stiffness measurements, scans were repeated per volunteer. Wave images were acquired throughout the LV myocardium, and were analyzed to obtain mean stiffness during the cardiac cycle. CMRE-derived stiffness values were correlated to age. RESULTS: Concordance correlation coefficient revealed good interscan agreement with rc of 0.77, with P-value < 0.0001. Significantly higher myocardial stiffness was observed during end-systole (ES) compared with end-diastole (ED) across all subjects. Additionally, increased deviation between ES and ED stiffness was observed with increased age. CONCLUSION: CMRE-derived stiffness is reproducible, with myocardial stiffness changing cyclically across the cardiac cycle. Stiffness is significantly higher during ES compared with ED. With age, ES myocardial stiffness increases more than ED, giving rise to an increased deviation between the two.


Subject(s)
Elasticity Imaging Techniques/methods , Heart/diagnostic imaging , Heart/physiopathology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Vascular Stiffness/physiology , Adult , Aged , Female , Humans , Male , Middle Aged , Reproducibility of Results , Young Adult
16.
Magn Reson Med ; 75(5): 1920-6, 2016 May.
Article in English | MEDLINE | ID: mdl-26096227

ABSTRACT

PURPOSE: To assess MR elastography (MRE)-derived aortic shear stiffness (µMRE ) measurements for: 1) reproducibility, 2) comparison to pulse wave velocity, 3) changes over the cardiac cycle, and 4) relationship with age. METHODS: Cardiac-gated aortic MRE was performed on 20 healthy volunteers (aged 20-73 years). For assessing reproducibility of stiffness measurements, scans were repeated per volunteer. MRE wave images were analyzed to obtain stiffness of the abdominal aorta across the cardiac cycle, and comparisons were made with subject age. RESULTS: Analysis of concordance correlation coefficient between scans 1 and 2 showed that rc = 0.86 (95% confidence interval, 0.77, 0.94) with P < 0.0001. Significantly higher µMRE was observed for all volunteers during end-systole when compared to end-diastole (P < 0.0001). µMRE increased with age; end-systolic stiffness demonstrated a relatively stronger correlation with age (r = 0.62, P = 0.003) when compared to end-diastolic stiffness (r = 0.51, P = 0.023); and the slopes of end-systole and end-diastole were found to be significantly different (P = 0.011). [Formula: see text] at end-systole and end-diastole correlated linearly with pulse wave velocity, with an r = 0.54 (P = 0.013) and r = 0.58 (P = 0.008), respectively. CONCLUSION: The results of this study indicate that MRE-derived aortic shear stiffness measurements are robust (reproducible and comparable to similar techniques). Mean µMRE was higher during end-systole when compared to end-diastole. µMRE was found to increase with age and showed a stronger correlation with end-systolic stiffness than with end-diastolic stiffness.


Subject(s)
Aorta/diagnostic imaging , Aorta/pathology , Elasticity Imaging Techniques/methods , Vascular Stiffness , Adult , Age Factors , Aged , Algorithms , Aorta, Abdominal/pathology , Blood Flow Velocity , Diastole , Healthy Volunteers , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Middle Aged , Pulse Wave Analysis , Reproducibility of Results , Systole , Young Adult
17.
J Magn Reson Imaging ; 41(1): 44-51, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24243654

ABSTRACT

PURPOSE: To determine the correlation in abdominal aortic stiffness obtained using magnetic resonance elastography (MRE) (µ(MRE)) and MRI-based pulse wave velocity (PWV) shear stiffness (µ(PWV)) estimates in normal volunteers of varying age, and also to determine the correlation between µ(MRE) and µ(PWV). MATERIALS AND METHODS: In vivo aortic MRE and MRI were performed on 21 healthy volunteers with ages ranging from 18 to 65 years to obtain wave and velocity data along the long axis of the abdominal aorta. The MRE wave images were analyzed to obtain mean stiffness and the phase contrast images were analyzed to obtain PWV measurements and indirectly estimate stiffness values from the Moens-Korteweg equation. RESULTS: Both µ(MRE) and µ(PWV) measurements increased with age, demonstrating linear correlations with R(2) values of 0.81 and 0.67, respectively. Significant difference (P ≤ 0.001) in mean µ(MRE) and µ(PWV) between young and old healthy volunteers was also observed. Furthermore, a poor linear correlation of R(2) value of 0.43 was determined between µ(MRE) and µ(PWV) in the initial pool of volunteers. CONCLUSION: The results of this study indicate linear correlations between µ(MRE) and µ(PWV) with normal aging of the abdominal aorta. Significant differences in mean µ(MRE) and µ(PWV) between young and old healthy volunteers were observed.


Subject(s)
Elasticity Imaging Techniques/methods , Magnetic Resonance Imaging/methods , Pulse Wave Analysis/methods , Vascular Stiffness/physiology , Adolescent , Adult , Aged , Aorta, Abdominal/physiopathology , Humans , Middle Aged , Reproducibility of Results , Young Adult
18.
Magn Reson Imaging ; 32(6): 679-83, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24637083

ABSTRACT

Magnetic resonance elastography (MRE) of the liver is a novel noninvasive clinical diagnostic tool to stage fibrosis based on measured stiffness. The purpose of this study is to design, evaluate and validate a rapid MRE acquisition technique for noninvasively quantitating liver stiffness which reduces by half the scan time, thereby decreasing image registration errors between four MRE phase offsets. In vivo liver MRE was performed on 16 healthy volunteers and 14 patients with biopsy-proven liver fibrosis using the standard clinical gradient recalled echo (GRE) MRE sequence (MREs) and a developed rapid GRE MRE sequence (MREr) to obtain the mean stiffness in an axial slice. The mean stiffness values obtained from the entire group using MREs and MREr were 2.72±0.85 kPa and 2.7±0.85 kPa, respectively, representing an insignificant difference. A linear correlation of R(2)=0.99 was determined between stiffness values obtained using MREs and MREr. Therefore, we can conclude that MREr can replace MREs, which reduces the scan time to half of that of the current standard acquisition (MREs), which will facilitate MRE imaging in patients with inability to hold their breath for long periods.


Subject(s)
Elasticity Imaging Techniques/methods , Liver Cirrhosis/diagnosis , Liver Cirrhosis/physiopathology , Magnetic Resonance Imaging/methods , Adult , Biopsy , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...