Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 18(21): 14720-9, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27185655

ABSTRACT

Nanocrystalline Lu3Ga5O12 garnets doped with Tm(3+)/Yb(3+) ions have been synthesized by a low cost and environmentally benign sol-gel technique and characterized for their structural, Stokes and anti-Stokes luminescence properties. The diffuse reflectance spectra of doped Lu3Ga5O12 nano-garnets have been measured to derive the partial energy level structure of Tm(3+) and Yb(3+) ions and possible energy transfer channels between them. Upon laser excitation at 473 nm, weak red and intense near-infrared Stokes emissions have been observed in the nano-garnets. The decay curves of (3)H4 and (1)G4 levels of Tm(3+) ions and the (2)F5/2 level of Yb(3+) ions have been measured upon resonant laser excitation and are found to be non-exponential in nature due to multipolar interactions. In order to know the kind of multipolar interaction among optically active ions, the decay curves are analyzed through the generalized Yokota-Tanimoto model. Moreover, under 970 nm laser excitation, intense blue anti-Stokes emission is observed by the naked eye in Tm(3+)-Yb(3+) co-doped Lu3Ga5O12 nano-garnets. The results show that as-synthesized nano-garnets may be useful in the field of phosphors and photonics.

2.
Chemphyschem ; 16(18): 3928-36, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26467682

ABSTRACT

Er(3+) -Yb(3+) co-doped Lu3 Ga5 O12 nanogarnets were prepared and characterized; their structural and luminescence properties were determined as a function of the Yb(3+) concentration. The morphology of the nanogarnets was studied by HRTEM. Under 488 nm excitation, the nanogarnets emit green, red, and near-infrared light. The decay curves for the ((4) S3/2 , (2) H11/2 ) and (4) F9/2 levels of the Er(3+) ions exhibit a non-exponential nature under resonant laser excitation and their effective lifetimes are found to decrease with an increase in the Yb(3+) concentration from 1.0 to 10.0 mol %. The non-exponential decay curves are well fitted to the Inokuti-Hirayama model for S=8, indicating that the mechanism of interaction for energy transfer between the optically active ions is of dipole-quadrupole type. Upon 976 nm laser excitation, an intense green upconverted emission is clearly observed by the naked eyes. A significant enhancement of the red-to-green intensity ratio of Er(3+) ions was observed with an increase in Yb(3+) concentration. The power dependence and the dynamics of the upconverted emission confirm the existence of two-photon upconversion processes for the green and red emissions.


Subject(s)
Erbium/chemistry , Gallium/chemistry , Infrared Rays , Light , Lutetium/chemistry , Nanostructures , Ytterbium/chemistry , Microscopy, Electron, Transmission , Powder Diffraction , Spectrum Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...