Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Front Neurol ; 14: 1123407, 2023.
Article in English | MEDLINE | ID: mdl-37251220

ABSTRACT

Mild traumatic brain injuries (mTBIs) trigger a neuroinflammatory response, which leads to perturbations in the levels of inflammatory cytokines, resulting in a distinctive profile. A systematic review and meta-analysis were conducted to synthesize data related to levels of inflammatory cytokines in patients with mTBI. The electronic databases EMBASE, MEDLINE, and PUBMED were searched from January 2014 to December 12, 2021. A total of 5,138 articles were screened using a systematic approach based on the PRISMA and R-AMSTAR guidelines. Of these articles, 174 were selected for full-text review and 26 were included in the final analysis. The results of this study demonstrate that within 24 hours, patients with mTBI have significantly higher levels of Interleukin-6 (IL-6), Interleukin-1 Receptor Antagonist (IL-1RA), and Interferon-γ (IFN-γ) in blood, compared to healthy controls in majority of the included studies. Similarly one week following the injury, patients with mTBI have higher circulatory levels of Monocyte Chemoattractant Protein-1/C-C Motif Chemokine Ligand 2 (MCP-1/CCL2), compared to healthy controls in majority of the included studies. The results of the meta-analysis also confirmed these findings by demonstrating significantly elevated blood levels of IL-6, MCP-1/CCL2, and Interleukin-1 beta (IL-1ß) in the mTBI population compared to healthy controls (p < 0.0001), particularly in the acute stages (<7 days). Furthermore, it was found that IL-6, Tumor Necrosis Factor-alpha (TNF-α), IL-1RA, IL-10, and MCP-1/CCL2 were associated with poor clinical outcomes following the mTBI. Finally, this research highlights the lack of consensus in the methodology of mTBI studies that measure inflammatory cytokines in the blood, and also provides direction for future mTBI research.

2.
Clin Neurophysiol Pract ; 5: 157-164, 2020.
Article in English | MEDLINE | ID: mdl-32939420

ABSTRACT

OBJECTIVE: It is unclear why specific individuals incur chronic symptoms following a concussion. This exploratory research aims to identify and characterize any neurophysiological differences that may exist in motor cortex function in post-concussion syndrome (PCS). METHODS: Fifteen adults with PCS and 13 healthy, non-injured adults were tested. All participants completed symptom questionnaires, and transcranial magnetic stimulation (TMS) was used to measure intracortical and transcallosal excitability and inhibition in the dominant motor cortex. RESULTS: Cortical silent period (p = 0.02, g = 0.96) and ipsilateral silent period (p = 0.04, g = 0.78) were shorter in the PCS group compared to the control group which may reflect reduced GABA-mediated inhibition in PCS. Furthermore, increased corticomotor excitability was observed in the left hemisphere but not the right hemisphere. CONCLUSIONS: These data suggest that persistent neurophysiological differences are present in those with PCS. The exact contributing factors to such changes remain to be investigated by future studies. SIGNIFICANCE: This study provides novel evidence of lasting neurophysiological changes in PCS.

3.
J Neurochem ; 141(2): 208-221, 2017 04.
Article in English | MEDLINE | ID: mdl-28251649

ABSTRACT

Intracellular purine turnover is mainly oriented to preserving the level of triphosphate nucleotides, fundamental molecules in vital cell functions that, when released outside cells, act as receptor signals. Conversely, high levels of purine bases and uric acid are found in the extracellular milieu, even in resting conditions. These compounds could derive from nucleosides/bases that, having escaped to cell reuptake, are metabolized by extracellular enzymes similar to the cytosolic ones. Focusing on purine nucleoside phosphorylase (PNP) that catalyzes the reversible phosphorolysis of purine (deoxy)-nucleosides/bases, we found that it is constitutively released from cultured rat C6 glioma cells into the medium, and has a molecular weight and enzyme activity similar to the cytosolic enzyme. Cell exposure to 10 µM ATP or guanosine triphosphate (GTP) increased the extracellular amount of all corresponding purines without modifying the levels/activity of released PNP, whereas selective activation of ATP P2Y1 or adenosine A2A metabotropic receptors increased PNP release and purine base formation. The reduction to 1% in oxygen supply (2 h) to cells decreased the levels of released PNP, leading to an increased presence of extracellular nucleosides and to a reduced formation of xanthine and uric acid. Conversely, 2 h cell re-oxygenation enhanced the extracellular amounts of both PNP and purine bases. Thus, hypoxia and re-oxygenation modulated in opposite manner the PNP release/activity and, thereby, the extracellular formation of purine metabolism end-products. In conclusion, extracellular PNP and likely other enzymes deputed to purine base metabolism are released from cells, contributing to the purinergic system homeostasis and exhibiting an important pathophysiological role.


Subject(s)
Glioma/enzymology , Purine-Nucleoside Phosphorylase/metabolism , Animals , Cell Line, Tumor , Rats
4.
Int J MS Care ; 18(5): 221-229, 2016.
Article in English | MEDLINE | ID: mdl-27803637

ABSTRACT

Background: There is evidence of the benefits of exercise training in multiple sclerosis (MS); however, few studies have been conducted in individuals with progressive MS and severe mobility impairment. A potential exercise rehabilitation approach is total-body recumbent stepper training (TBRST). We evaluated the safety and participant-reported experience of TBRST in people with progressive MS and compared the efficacy of TBRST with that of body weight-supported treadmill training (BWSTT) on outcomes of function, fatigue, and health-related quality of life (HRQOL). Methods: Twelve participants with progressive MS (Expanded Disability Status Scale scores, 6.0-8.0) were randomized to receive TBRST or BWSTT. Participants completed three weekly sessions (30 minutes) of exercise training for 12 weeks. Primary outcomes included safety assessed as adverse events and patient-reported exercise experience assessed as postexercise response and evaluation of exercise equipment. Secondary outcomes included the Multiple Sclerosis Functional Composite, the Modified Fatigue Impact Scale, and the Multiple Sclerosis Quality of Life-54 questionnaire scores. Assessments were conducted at baseline and after 12 weeks. Results: Safety was confirmed in both exercise groups. Participants reported enjoying both exercise modalities; however, TBRST was reviewed more favorably. Both interventions reduced fatigue and improved HRQOL (P ≤ .05); there were no changes in function. Conclusions: Both TBRST and BWSTT seem to be safe, well tolerated, and enjoyable for participants with progressive MS with severe disability. Both interventions may also be efficacious for reducing fatigue and improving HRQOL. TBRST should be further explored as an exercise rehabilitation tool for patients with progressive MS.

5.
Brain Behav Immun ; 46: 1-16, 2015 May.
Article in English | MEDLINE | ID: mdl-25736063

ABSTRACT

Post-concussion syndrome is an aggregate of symptoms that commonly present together after head injury. These symptoms, depending on definition, include headaches, dizziness, neuropsychiatric symptoms, and cognitive impairment. However, these symptoms are common, occurring frequently in non-head injured controls, leading some to question the existence of post-concussion syndrome as a unique syndrome. Therefore, some have attempted to explain post-concussion symptoms as post-traumatic stress disorder, as they share many similar symptoms and post-traumatic stress disorder does not require head injury. This explanation falls short as patients with post-concussion syndrome do not necessarily experience many key symptoms of post-traumatic stress disorder. Therefore, other explanations must be sought to explain the prevalence of post-concussion like symptoms in non-head injury patients. Many of the situations in which post-concussion syndrome like symptoms may be experienced such as infection and post-surgery are associated with systemic inflammatory responses, and even neuroinflammation. Post-concussion syndrome itself has a significant neuroinflammatory component. In this review we examine the evidence of neuroinflammation in post-concussion syndrome and the potential role systemic inflammation plays in post-concussion syndrome like symptoms. We conclude that given the overlap between these conditions and the role of inflammation in their etiologies, a new term, post-inflammatory brain syndromes (PIBS), is necessary to describe the common outcomes of many different inflammatory insults. The concept of post-concussion syndrome is in its evolution therefore, the new term post-inflammatory brain syndromes provides a better understanding of etiology of its wide-array of symptoms and the wide array of conditions they can be seen in.


Subject(s)
Brain Concussion/physiopathology , Brain/physiopathology , Inflammation/physiopathology , Post-Concussion Syndrome/diagnosis , Post-Concussion Syndrome/physiopathology , Brain Concussion/psychology , Humans , Inflammation/psychology , Post-Concussion Syndrome/psychology
7.
Adv Exp Med Biol ; 837: 23-33, 2015.
Article in English | MEDLINE | ID: mdl-25310956

ABSTRACT

Increasing body of evidence indicates that neuron-neuroglia interaction may play a key role in determining the progression of neurodegenerative diseases including Parkinson's disease (PD), a chronic pathological condition characterized by selective loss of dopaminergic (DA) neurons in the substantia nigra. We have previously reported that guanosine (GUO) antagonizes MPP(+)-induced cytotoxicity in neuroblastoma cells and exerts neuroprotective effects against 6-hydroxydopamine (6-OHDA) and beta-amyloid-induced apoptosis of SH-SY5Y cells. In the present study we demonstrate that GUO protected C6 glioma cells, taken as a model system for astrocytes, from 6-OHDA-induced neurotoxicity. We show that GUO, either alone or in combination with 6-OHDA activated the cell survival pathways ERK and PI3K/Akt. The involvement of these signaling systems in the mechanism of the nucleoside action was strengthened by a reduction of the protective effect when glial cells were pretreated with U0126 or LY294002, the specific inhibitors of MEK1/2 and PI3K, respectively. Since the protective effect on glial cell death of GUO was not affected by pretreatment with a cocktail of nucleoside transporter blockers, GUO transport and its intracellular accumulation were not at play in our in vitro model of PD. This fits well with our data which pointed to the presence of specific binding sites for GUO on rat brain membranes. On the whole, the results described in the present study, along with our recent evidence showing that GUO when administered to rats via intraperitoneal injection is able to reach the brain and with previous data indicating that it stimulates the release of neurotrophic factors, suggest that GUO, a natural compound, by acting at the glial level could be a promising agent to be tested against neurodegeneration.


Subject(s)
Astrocytes/drug effects , Guanosine/pharmacology , Neuroprotective Agents/pharmacology , Neurotoxins/antagonists & inhibitors , Oxidopamine/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Apoptosis/drug effects , Biological Transport/drug effects , Butadienes/pharmacology , Cell Line, Tumor , Chromones/pharmacology , DNA Fragmentation/drug effects , Drug Evaluation, Preclinical , Glioma/pathology , In Vitro Techniques , MAP Kinase Signaling System/drug effects , Morpholines/pharmacology , Neurotoxins/toxicity , Nitriles/pharmacology , Nucleoside Transport Proteins/antagonists & inhibitors , Oxidopamine/toxicity , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Rats
8.
Arch Phys Med Rehabil ; 95(3): 588-90, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24060492

ABSTRACT

Postanoxic myoclonus is a rare manifestation after an anoxic event, with fewer than 150 cases reported in the literature. The condition is characterized by myoclonic jerks, which are worse on action than at rest, and postural lapses, ataxia, and dysarthria. The disability caused by postanoxic myoclonus can be profound, and treatment in the rehabilitation setting is exceptionally challenging. We present 2 patients who suffered from postanoxic myoclonus after an anoxic event, both of whom were successfully treated with a combination of levetiracetam, valproic acid, and clonazepam. These cases act as a framework for discussing the management of postanoxic myoclonus in the clinical setting.


Subject(s)
Anticonvulsants/therapeutic use , Clonazepam/therapeutic use , Myoclonus/drug therapy , Piracetam/analogs & derivatives , Valproic Acid/therapeutic use , Aged , Anticonvulsants/administration & dosage , Clonazepam/administration & dosage , Drug Therapy, Combination , Humans , Hypoxia/complications , Levetiracetam , Male , Middle Aged , Myoclonus/etiology , Piracetam/administration & dosage , Piracetam/therapeutic use , Valproic Acid/administration & dosage
9.
Restor Neurol Neurosci ; 31(5): 597-617, 2013.
Article in English | MEDLINE | ID: mdl-23760224

ABSTRACT

PURPOSE: Acute spinal cord injury (SCI) triggers multiple cellular and molecular pathways; therapy aimed at only one pathway is unlikely to succeed. Anecdotal reports indicate that a novel herbal formulation (JSK-Ji-Sui-Kang) may enhance recovery in humans with SCI. We investigated whether JSK's therapeutic effects could be verified in a well-established SCI model in rats. METHODS: Therapeutic effects of JSK were tested using a standard behavioral assessment, histological, immunochemical and microarray analysis. Phytochemical fingerprinting of JSK was performed using high performance liquid chromatography coupled with photodiode array detection and electrospray ionization-mass spectrometry. JSK or vehicle was gavaged to rats 24 hours after SCI and daily thereafter for 3 weeks. RESULTS: Locomotor function significantly improved (n = 12; p < 0.05), tissue damage was reduced (p < 0.01; n = 6) and more axons and myelin were observed in JSK-treated compared with vehicle control animals. JSK significantly enhanced expression of neuroglobin, vascular endothelial growth factor and growth-associated protein 43, and reduced the expression of caspase 3, cyclooxygenase-2, RhoA (p < 0.05; n = 6) and fibrinogen (p < 0.01; n = 6). RNA microarray indicated that JSK altered transcription of genes involved in ischemic and inflammatory/immune responses and apoptosis (p < 0.05; n = 3). CONCLUSIONS: JSK appears to target multiple biochemical and cellular pathways to enhance functional recovery and improve outcomes of SCI. The results provide a basis for further investigation of JSK's effects following SCI.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Plant Preparations/therapeutic use , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Animals , Drugs, Chinese Herbal/chemistry , Female , Plant Preparations/chemistry , Rats , Rats, Wistar , Spinal Cord Injuries/metabolism , Treatment Outcome
10.
J Neurosci Res ; 91(2): 262-72, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23151946

ABSTRACT

After ischemic stroke, early thrombolytic therapy to reestablish tissue perfusion improves outcome but triggers a cascade of deleterious cellular and molecular events. Using a collaborative approach, our groups examined the effects of guanosine (Guo) in response to ischemic reperfusion injury in vitro and in vivo. In a transient middle cerebral artery occlusion (MCAO) in rats, Guo significantly reduced infarct volume in a dose-dependent manner when given systemically either immediately before or 30 min, but not 60 min, after the onset of the 5.5-hr reperfusion period. In a separate experiment, Guo significantly reduced infarct volume after 24 hr of reperfusion when administered 5 min before reperfusion. Western blot analysis did not reveal any significant changes either in endoplasmic reticulum (ER) stress proteins (GRP 78 and 94) or HSP 70 or in levels of m-calpain. In vitro oxygen and glucose deprivation (OGD) significantly increased production of both reactive oxygen species (ROS) and interleukin-8 (IL-8) in the primary astrocytes. Guo did not alter ROS or IL-8 production when given to the astrocytes before OGD. However, Guo when added to the cells prior to or 30 min after reperfusion significantly reduced IL-8 release but not ROS formation. Our study revealed a dose- and time-dependent protective effect of Guo on reperfusion injury in vitro and vivo. The mechanisms by which Guo exerts its effect are independent of unfolded proteins in ER or the level of intracellular calcium or ROS formation. However, the effect may be induced, at least partially, by inhibiting IL-8, a marker of reperfusion-triggered proinflammatory events.


Subject(s)
Brain Infarction/prevention & control , Guanosine/administration & dosage , Infarction, Middle Cerebral Artery/drug therapy , Neuroprotective Agents/administration & dosage , Reperfusion Injury/prevention & control , Analysis of Variance , Animals , Animals, Newborn , Astrocytes/drug effects , Astrocytes/metabolism , Brain Infarction/etiology , Cells, Cultured , Gene Expression Regulation/drug effects , Glucose/deficiency , Heat-Shock Proteins/metabolism , Hypoxia , Interleukin-8/metabolism , Male , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Reperfusion/adverse effects , Reperfusion Injury/complications , Time Factors
11.
Neural Regen Res ; 7(28): 2165-75, 2012 Oct 05.
Article in English | MEDLINE | ID: mdl-25538736

ABSTRACT

Previous studies have shown that transplanted enteric glia enhance axonal regeneration, reduce tissue damage, and promote functional recovery following spinal cord injury. However, the mechanisms by which enteric glia mediate these beneficial effects are unknown. Neurotrophic factors can promote neuronal differentiation, survival and neurite extension. We hypothesized that enteric glia may exert their protective effects against spinal cord injury partially through the secretion of neurotrophic factors. In the present study, we demonstrated that primary enteric glia cells release nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor over time with their concentrations reaching approximately 250, 100 and 50 pg/mL of culture medium respectively after 48 hours. The biological relevance of this secretion was assessed by incubating dissociated dorsal root ganglion neuronal cultures in enteric glia-conditioned medium with and/or without neutralizing antibodies to each of these proteins and evaluating the differences in neurite growth. We discovered that conditioned medium enhances neurite outgrowth in dorsal root ganglion neurons. Even though there was no detectable amount of neurotrophin-3 secretion using ELISA analysis, the neurite outgrowth effect can be attenuated by the antibody-mediated neutralization of each of the aforementioned neurotrophic factors. Therefore, enteric glia secrete nerve growth factor, brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor and neurotrophin-3 into their surrounding environment in concentrations that can cause a biological effect.

12.
Brain Res ; 1407: 79-89, 2011 Aug 17.
Article in English | MEDLINE | ID: mdl-21774919

ABSTRACT

Previously we have found that extracellular guanosine (Guo) has neuroprotective properties in in vitro and in vivo. Moreover, extracellular Guo significantly increased in the ipsilateral hemisphere within 2h following focal stroke in rats, and remained elevated for one week. Therefore, we hypothesized that Guo could be a potential candidate for a non-toxic neuroprotective agent. In the present study, we examined the effects of Guo on rats following permanent middle cerebral artery occlusion (MCAO). We also determined whether Guo can precondition neurons by modulating endoplasmic reticulum (ER) stress proteins. As most therapies employ a combination treatment regimen, we optimized the neuroprotection by combining pre- and post-MCAO treatments with Guo, attempting to reduce both ischemic cell death and improve functional recovery. A combination of 4mg/kg Guo given 30min pre-stroke and 8mg/kg Guo given 3, 24 and 48h post-stroke exerted the most significant decrease in infarct volume and sustainable improvement in neurological function. Moreover, these effects are not attributable to Guo metabolites. Measurements taken 6h post-MCAO from animals pre-treated with Guo did not reveal any significant changes in ER stress proteins (GRP 78 and 94) or HSP 70, but did reveal significantly increased levels of m-calpain. Thus, our data indicate that there is a treatment regimen for Guo as a neuroprotectant following ischemic stroke. The mechanism by which Guo confers neuroprotection may involve an increase in m-calpain, possibly resulting from a mild increase in intracellular calcium. M-calpain may be involved in the preconditioning response to ischemia by upregulating endogenous pro-survival mechanisms in neurons.


Subject(s)
Brain Ischemia/drug therapy , Guanosine/therapeutic use , Stroke/drug therapy , Animals , Behavior, Animal/drug effects , Blotting, Western , Body Weight/drug effects , Brain Ischemia/complications , Brain Ischemia/pathology , Dose-Response Relationship, Drug , Eating/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/physiology , Guanosine/administration & dosage , Heat-Shock Proteins/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Male , Membrane Glycoproteins/metabolism , Neurons/drug effects , Rats , Rats, Sprague-Dawley , Stroke/etiology , Stroke/pathology
13.
Arch Phys Med Rehabil ; 92(1): 31-6, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21187202

ABSTRACT

OBJECTIVE: To examine the effects of body-weight supported treadmill training (BWSTT) on functional ability and quality of life in patients with progressive multiple sclerosis (MS) of high disability. DESIGN: Before-after trial. SETTING: Exercise rehabilitation research center. PARTICIPANTS: Patients with progressive MS (N=6; 5 primary progressive, 1 secondary progressive) with high disability (mean±SD expanded disability status scale, [EDSS]=6.9±1.07). All participants completed the trial. INTERVENTIONS: Subjects completed 36 sessions of BWSTT (30-min sessions, 3×wk) over 12 weeks. MAIN OUTCOME MEASURES: Outcome measures included functional ability assessed by EDSS and Multiple Sclerosis Functional Composite (MSFC). Quality of life and fatigue were assessed by the MS Quality of Life-54 (MSQoL-54) and the Modified Fatigue Impact Scale (MFIS), respectively. All tests were administered at baseline and after 12 weeks of training. RESULTS: All participants progressively improved training intensity; treadmill walking speed increased (34%; P<.001), and percent body weight support was reduced (42%; P<.001). A significant improvement in both physical (P=.02) and mental (P=.01) subscales of the MSQoL-54 was found. Fatigue was nonsignificantly reduced by 31% (P=.22); however, a large effect size (ES) was noted (ES=-.93). Functional ability remained stable with nonsignificant improvements in MSFC (P=.35; ES=.23) and EDSS (P=.36; ES=-.08) scores. CONCLUSIONS: Twelve weeks of BWSTT produces beneficial effects on quality of life and potentially reduces fatigue in patients with primary progressive MS of high disability level. Larger trials will be required to confirm these findings and to evaluate further the effects of BWSTT in progressive MS.


Subject(s)
Exercise Therapy/methods , Multiple Sclerosis, Chronic Progressive/rehabilitation , Quality of Life , Walking , Adult , Fatigue/physiopathology , Fatigue/rehabilitation , Female , Humans , Male , Middle Aged , Multiple Sclerosis, Chronic Progressive/physiopathology , Pilot Projects , Time Factors
14.
Purinergic Signal ; 4(1): 61-71, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18368534

ABSTRACT

Axonal demyelination is a consistent pathological sequel to chronic brain and spinal cord injuries and disorders that slows or disrupts impulse conduction, causing further functional loss. Since oligodendroglial progenitors are present in the demyelinated areas, failure of remyelination may be due to lack of sufficient proliferation and differentiation of oligodendroglial progenitors. Guanosine stimulates proliferation and differentiation of many types of cells in vitro and exerts neuroprotective effects in the central nervous system (CNS). Five weeks after chronic traumatic spinal cord injury (SCI), when there is no ongoing recovery of function, intraperitoneal administration of guanosine daily for 2 weeks enhanced functional improvement correlated with the increase in myelination in the injured cord. Emphasis was placed on analysis of oligodendrocytes and NG2-positive (NG2+) cells, an endogenous cell population that may be involved in oligodendrocyte replacement. There was an increase in cell proliferation (measured by bromodeoxyuridine staining) that was attributable to an intensification in progenitor cells (NG2+ cells) associated with an increase in mature oligodendrocytes (determined by Rip+ staining). The numbers of astroglia increased at all test times after administration of guanosine whereas microglia only increased in the later stages (14 days). Injected guanosine and its breakdown product guanine accumulated in the spinal cords; there was more guanine than guanosine detected. We conclude that functional improvement and remyelination after systemic administration of guanosine is due to the effect of guanosine/guanine on the proliferation of adult progenitor cells and their maturation into myelin-forming cells. This raises the possibility that administration of guanosine may be useful in the treatment of spinal cord injury or demyelinating diseases such as multiple sclerosis where quiescent oligodendroglial progenitors exist in demyelinated plaques.

15.
Neurosci Lett ; 431(2): 101-5, 2008 Jan 31.
Article in English | MEDLINE | ID: mdl-18191898

ABSTRACT

Deprivation of oxygen and glucose for 5h induces apoptosis in SH-SY5Y neuroblastoma cell cultures. After combined glucose and oxygen deprivation (CGOD) addition of guanosine (100 microM), a non-adenine-based purine nucleoside, significantly reduced the proportion of cells undergoing apoptosis. To determine whether guanosine was also neuroprotective in vivo, we undertook middle cerebral artery occlusion (MCAo) on male Wistar rats and administered guanosine (8mg/kg), intraperitoneally, or saline (vehicle control) daily for 7 days. Guanosine prolonged rat survival and decreased both neurological deficits and tissue damage resulting from MCAo. These data are the first to demonstrate that guanosine protects neurons from the effects of CGOD even when administered 5h after the stimulus, and is neuroprotective in experimental stroke in rats.


Subject(s)
Guanosine/therapeutic use , Neuroprotective Agents/therapeutic use , Stroke/drug therapy , Animals , Cell Line, Transformed , Cerebral Infarction/etiology , Cerebral Infarction/prevention & control , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Glucose/deficiency , Hypoxia , In Situ Nick-End Labeling , Male , Rats , Rats, Wistar , Stroke/complications , Time Factors
16.
J Immunol ; 178(2): 720-31, 2007 Jan 15.
Article in English | MEDLINE | ID: mdl-17202332

ABSTRACT

Growing evidence implicates CD40, a member of the TNFR superfamily, as contributing to the pathogenesis of many neurodegenerative diseases. Thus, strategies to suppress its expression may be of benefit in those disorders. To this aim, we investigated the effect of guanosine, a purine nucleoside that exerts neurotrophic and neuroprotective effects. CD40 expression and function are increased by exposure of mouse microglia cultures or the N9 microglia cell line to IFN-gamma (10 ng/ml) plus TNF-alpha (50 ng/ml) or beta amyloid (Abeta) peptide (Abeta(1-42); 500 nM). Culture pretreatment with guanosine (10-300 microM), starting 1 h before cytokine or Abeta addition, dose-dependently inhibited the CD40-induced expression as well as functional CD40 signaling by suppressing IL-6 production promoted by IFN-gamma/TNF-alpha challenge in the presence of CD40 cross-linking. Moreover, guanosine abrogated IFN-gamma-induced phosphorylation on Ser(727) and translocation of STAT-1alpha to the nucleus as well as TNF-alpha-/Abeta-induced IkappaBalpha and NF-kappaB p65/RelA subunit phosphorylation, thus inhibiting NF-kappaB-induced nuclear translocation. Guanosine effects were mediated by an increased phosphorylation of Akt, a PI3K downstream effector, as well as of ERK1/2 and p38 in the MAPK system, because culture pretreatment with selective ERK1/2, p38 MAPK, and PI3K antagonists (U0126, SB203580, or LY294002, respectively) counteracted guanosine inhibition on IFN-gamma/TNF-alpha-induced CD40 expression and function as well as on STAT-1alpha or NF-kappaB nuclear translocation. These findings suggest a role for guanosine as a potential drug in the experimental therapy of neuroinflammatory/neurodegenerative diseases, particularly Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides/pharmacology , CD40 Antigens/metabolism , Guanosine/pharmacology , Interferon-gamma/pharmacology , Microglia/drug effects , Microglia/metabolism , Peptide Fragments/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Animals , CD40 Antigens/genetics , Cells, Cultured , Gene Expression Regulation , I-kappa B Kinase/metabolism , Interferon-Stimulated Gene Factor 3/metabolism , Mice , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Pertussis Toxin/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoserine/metabolism , Protein Subunits/metabolism , Protein Transport , Purinergic P1 Receptor Antagonists , Purinergic P2 Receptor Antagonists , Receptors, Purinergic P1/metabolism , Receptors, Purinergic P2/metabolism , Signal Transduction , Transcription, Genetic/genetics
17.
Purinergic Signal ; 3(4): 399-409, 2007 Sep.
Article in English | MEDLINE | ID: mdl-18404453

ABSTRACT

Guanosine exerts neuroprotective effects in the central nervous system. Apoptosis, a morphological form of programmed cell death, is implicated in the pathophysiology of Parkinson's disease (PD). MPP(+), a dopaminergic neurotoxin, produces in vivo and in vitro cellular changes characteristic of PD, such as cytotoxicity, resulting in apoptosis. Undifferentiated human SH-SY5Y neuroblastoma cells had been used as an in vitro model of Parkinson's disease. We investigated if extracellular guanosine affected MPP(+)-induced cytotoxicity and examined the molecular mechanisms mediating its effects. Exposure of neuroblastoma cells to MPP(+) (10 muM-5 mM for 24-72 h) induced DNA fragmentation in a time-dependent manner (p < 0.05). Administration of guanosine (100 muM) before, concomitantly with or, importantly, after the addition of MPP(+) abolished MPP(+)-induced DNA fragmentation. Addition of MPP(+) (500 muM) to cells increased caspase-3 activity over 72 h (p < 0.05), and this was abolished by pre- or co-treatment with guanosine. Exposure of cells to pertussis toxin prior to MPP(+) eliminated the anti-apoptotic effect of guanosine, indicating that this effect is dependent on a Gi protein-coupled receptor, most likely the putative guanosine receptor. The protection by guanosine was also abolished by the selective inhibitor of the enzyme PI-3-K/Akt/PKB (LY294002), confirming that this pathway plays a decisive role in this effect of guanosine. Neither MPP(+) nor guanosine had any significant effect on alpha-synuclein expression. Thus, guanosine antagonizes and reverses MPP(+)-induced cytotoxicity of neuroblastoma cells via activation of the cell survival pathway, PI-3-K/Akt/PKB. Our results suggest that guanosine may be an effective pharmacological intervention in PD.

18.
Purinergic Signal ; 3(4): 411-21, 2007 Sep.
Article in English | MEDLINE | ID: mdl-18404454

ABSTRACT

Spinal cord injury results in progressive waves of secondary injuries, cascades of noxious pathological mechanisms that substantially exacerbate the primary injury and the resultant permanent functional deficits. Secondary injuries are associated with inflammation, excessive cytokine release, and cell apoptosis. The purine nucleoside guanosine has significant trophic effects and is neuroprotective, antiapoptotic in vitro, and stimulates nerve regeneration. Therefore, we determined whether systemic administration of guanosine could protect rats from some of the secondary effects of spinal cord injury, thereby reducing neurological deficits. Systemic administration of guanosine (8 mg/kg per day, i.p.) for 14 consecutive days, starting 4 h after moderate spinal cord injury in rats, significantly improved not only motor and sensory functions, but also recovery of bladder function. These improvements were associated with reduction in the inflammatory response to injury, reduction of apoptotic cell death, increased sparing of axons, and preservation of myelin. Our data indicate that the therapeutic action of guanosine probably results from reducing inflammation resulting in the protection of axons, oligodendrocytes, and neurons and from inhibiting apoptotic cell death. These data raise the intriguing possibility that guanosine may also be able to reduce secondary pathological events and thus improve functional outcome after traumatic spinal cord injury in humans.

19.
Purinergic Signal ; 2(4): 637-49, 2006 Nov.
Article in English | MEDLINE | ID: mdl-18404467

ABSTRACT

The main source of cholesterol in the central nervous system (CNS) is represented by glial cells, mainly astrocytes, which also synthesise and secrete apolipoproteins, in particular apolipoprotein E (ApoE), the major apolipoprotein in the brain, thus generating cholesterol-rich high density lipoproteins (HDLs). This cholesterol trafficking, even though still poorly known, is considered to play a key role in different aspects of neuronal plasticity and in the stabilisation of synaptic transmission. Moreover, cell cholesterol depletion has recently been linked to a reduction in amyloid beta formation. Here we demonstrate that guanosine, which we previously reported to exert several neuroprotective effects, was able to increase cholesterol efflux from astrocytes and C6 rat glioma cells in the absence of exogenously added acceptors. In this effect the phosphoinositide 3 kinase/extracellular signal-regulated kinase 1/2 (PI3K/ERK1/2) pathway seems to play a pivotal role. Guanosine was also able to increase the expression of ApoE in astrocytes, whereas it did not modify the levels of ATP-binding cassette protein A1 (ABCA1), considered the main cholesterol transporter in the CNS. Given the emerging role of cholesterol balance in neuronal repair, these effects provide evidence for a role of guanosine as a potential pharmacological tool in the modulation of cholesterol homeostasis in the brain.

20.
Purinergic Signal ; 2(4): 651-61, 2006 Nov.
Article in English | MEDLINE | ID: mdl-18404468

ABSTRACT

Wound healing is a complex sequence of cellular and molecular processes that involves multiple cell types and biochemical mediators. Several growth factors have been identified that regulate tissue repair, including the neurotrophin nerve growth factor (NGF). As non-adenine based purines (NABPs) are known to promote cell proliferation and the release of growth factors, we investigated whether NABPs had an effect on wound healing. Full-thickness, excisional wound healing in healthy BALB/c mice was significantly accelerated by daily topical application of NABPs such as guanosine (50% closure by days 2.5-2.8). Co-treatment of wounds with guanosine plus anti-NGF reversed the guanosine-promoted acceleration of wound healing, indicating that this effect of guanosine is mediated, at least in part, by NGF. Selective inhibitors of the NGF-inducible serine/threonine protein kinase (protein kinase N), such as 6-methylmercaptopurine riboside abolished the acceleration of wound healing caused by guanosine, confirming that activation of this enzyme is required for this effect of guanosine. Treatment of genetically diabetic BKS.Cg-m+/+lepr db mice, which display impaired wound healing, with guanosine led to accelerated healing of skin wounds (25% closure by days 2.8-3.0). These results provide further confirmation that the NABP-mediated acceleration of cutaneous wound healing is mediated via an NGF-dependent mechanism. Thus, NABPs may offer an alternative and viable approach for the treatment of wounds in a clinical setting.

SELECTION OF CITATIONS
SEARCH DETAIL
...