Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Am J Med Genet A ; : e63622, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572626

ABSTRACT

Nonketotic hyperglycinemia (NKH) is a relatively well-characterized inborn error of metabolism that results in a combination of lethargy, hypotonia, seizures, developmental arrest, and, in severe cases, death early in life. Three genes encoding components of the glycine cleavage enzyme system-GLDC, AMT, and GCSH-are independently associated with NKH. We report on a patient with severe NKH in whom the homozygous pathogenic variant in AMT (NM_000481.3):c.602_603del (p.Lys201Thrfs*75) and the homozygous likely pathogenic variant in GLDC(NM_000170.2):c.2852C>A (p.Ser951Tyr) were both identified. Our patient demonstrates a novel combination of two homozygous disease-causing variants impacting the glycine cleavage pathway at two different components, and elicits management- and genetic counseling-related challenges for the family.

2.
Am J Med Genet A ; 194(1): 53-58, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37664979

ABSTRACT

Pathogenic heterozygous variants in DHX16 have been recently identified in association with a variety of clinical features, including neuromuscular disease, sensorineural hearing loss, ocular anomalies, and other phenotypes. All DHX16 disease-causing variants previously reported in affected individuals are missense in nature, nearly all of which were found to be de novo. Here we report on a patient with neuromuscular disease, hearing loss, retinal degeneration, and previously unreported phenotypic features including mitochondrial deficiency and primary ovarian insufficiency, in whom a novel de novo likely pathogenic variant in DHX16 NM_003587.4:c.2033A > G (p.Glu678Gly) was identified. Furthermore, we conducted an in-depth literature review of DHX16's role in disease and utilized high-performing in silico prediction algorithms to compare and contrast the predicted effects of all reported disease-associated DHX16 variants on protein structure and function.


Subject(s)
Mutation, Missense , Neuromuscular Diseases , Humans , Mutation, Missense/genetics , Phenotype , Heterozygote , Mitochondria , RNA Helicases/genetics
3.
Mod Pathol ; 36(11): 100294, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37532182

ABSTRACT

Gliomas harboring oncogenic ROS1 alterations are uncommon and primarily described in infants. Our goal was to characterize the clinicopathological features and molecular signatures of the full spectrum of ROS1 fusion-positive gliomas across all age groups. Through a retrospective multi-institutional collaboration, we report a collection of unpublished ROS1 fusion gliomas along with the characterization and meta-analysis of new and published cases. A cohort of 32 new and 58 published cases was divided into the following 3 age groups: 19 infants, 40 pediatric patients, and 31 adults with gliomas. Tumors in infants and adults showed uniformly high-grade morphology; however, tumors in pediatric patients exhibited diverse histologic features. The GOPC::ROS1 fusion was prevalent (61/79, 77%) across all age groups, and 10 other partner genes were identified. Adult tumors showed recurrent genomic alterations characteristic of IDH wild-type glioblastoma, including the +7/-10/CDKN2A deletion; amplification of CDK4, MDM2, and PDGFRA genes; and mutations involving TERTp, TP53, PIK3R1, PIK3CA, PTEN, and NF1 genes. Infant tumors showed few genomic alterations, whereas pediatric tumors showed moderate genomic complexity. The outcomes were significantly poorer in adult patients. Although not statistically significant, tumors in infant and pediatric patients with high-grade histology and in hemispheric locations appeared more aggressive than tumors with lower grade histology or those in nonhemispheric locations. In conclusion, this study is the largest to date to characterize the clinicopathological and molecular signatures of ROS1 fusion-positive gliomas from infant, pediatric, and adult patients. We conclude that ROS1 likely acts as a driver in infant and pediatric gliomas and as a driver or codriver in adult gliomas. Integrated comprehensive clinical testing might be helpful in identifying such patients for possible targeted therapy.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Child , Adult , Infant , Young Adult , Protein-Tyrosine Kinases/genetics , Retrospective Studies , Proto-Oncogene Proteins/genetics , Glioma/genetics , Glioma/pathology , Glioblastoma/genetics , Mutation , Brain Neoplasms/genetics , Brain Neoplasms/pathology
4.
J Mol Diagn ; 24(10): 1100-1111, 2022 10.
Article in English | MEDLINE | ID: mdl-35868509

ABSTRACT

In 2019, the American College of Medical Genetics and Genomics and the Clinical Genome Resource published updated technical standards for the interpretation and reporting of copy number variants (CNVs), introducing a semiquantitative classification system to improve standardization and consistency between laboratories. Evaluation of these guidelines' performance will inform laboratories about the impact of their implementation into clinical practice. A total of 145 difficult-to-classify CNVs, originally assessed by an academic molecular diagnostic laboratory, were re-interpreted/classified according to the American College of Medical Genetics and Genomics-Clinical Genome Resource guidelines. Classifications between interpretation systems were then compared. The concordance rate was 60.7%, and significantly more variants of uncertain significance were obtained when using the guidelines (n = 98) versus the laboratory's classification system (n = 49; P < 0.001). The concordance rate was presumably impacted by the intentionally unclear nature of the selected variants. The difference in variant of uncertain significance rate was largely due to laboratory-specific practices for variant interpretation and reporting and differences in utilization of general population data. Laboratory-specific policies and practices may need to be addressed for true standardization. Challenges to consistent guideline utilization are centered around the general lack of high-quality curated data available for CNV interpretations and the inherent subjectivity in the selection of evidence criteria and application of evidence points. Multiple aspects of the guidelines were highlighted to further improve classification standardization.


Subject(s)
DNA Copy Number Variations , Genetics, Medical , DNA Copy Number Variations/genetics , Genetic Testing , Genetic Variation , Genomics , Humans , United States
5.
J Autism Dev Disord ; 52(11): 4828-4842, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34773222

ABSTRACT

Our institution developed and continuously improved a Neurodevelopmental Reflex (NDR) algorithm to help physicians with genetic test ordering for neurodevelopmental disorders (NDDs). To assess its performance, we performed a retrospective study of 511 patients tested through NDR from 2018 to 2019. SNP Microarray identified pathogenic/likely pathogenic copy number variations in 27/511 cases (5.28%). Among the 484 patients tested for Fragile X FMR1 CGG repeats, a diagnosis (0.20%) was established for one male mosaic for a full mutation, a premutation, and a one-CGG allele. Within the 101 normocephalic female patients tested for MECP2, two patients were found to carry pathogenic variants (1.98%). This retrospective study suggested the NDR algorithm effectively established diagnoses for patients with NDDs with a yield of 5.87%.


Subject(s)
Autism Spectrum Disorder , Fragile X Syndrome , Neurodevelopmental Disorders , Autism Spectrum Disorder/diagnosis , Child , DNA Copy Number Variations , Female , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/diagnosis , Fragile X Syndrome/genetics , Genetic Testing , Hospitals , Humans , Male , Mutation , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Retrospective Studies , Trinucleotide Repeat Expansion
7.
J Pediatr ; 206: 286-292.e1, 2019 03.
Article in English | MEDLINE | ID: mdl-30413314

ABSTRACT

Variable lung disease was documented in 2 infants with heterozygous TBX4 mutations; their clinical presentations, pathology, and outcomes were distinct. These findings demonstrate that TBX4 gene mutations are associated with neonatal respiratory failure and highlight the wide spectrum of clinicopathological outcomes that have implications for patient diagnosis and management.


Subject(s)
Mutation/genetics , Respiratory Insufficiency/genetics , Respiratory Insufficiency/pathology , T-Box Domain Proteins/genetics , Female , Humans , Infant, Newborn , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...