Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20671, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001139

ABSTRACT

The Internet of Things (IoT) is evolving in various sectors such as industries, healthcare, smart homes, and societies. Billions and trillions of IoT devices are used in e-health systems, known as the Internet of Medical Things (IoMT), to improve communication processes in the network. Scientists and researchers have proposed various methods and schemes to ensure automatic monitoring, communication, diagnosis, and even operating on patients at a distance. Several researchers have proposed security schemes and approaches to identify the legitimacy of intelligent systems involved in maintaining records in the network. However, existing schemes have their own performance issues, including delay, storage efficiency, costs, and others. This paper proposes trusted schemes that combine mean and subjective logic aggregation methods to compute the trust of each communicating device in the network. Additionally, the network maintains a blockchain of legitimate devices to oversee the trusted devices in the network. The proposed mechanism is further verified and analyzed using various security metrics, such as reliability, trust, delay, beliefs, and disbeliefs, in comparison to existing schemes.

2.
Article in English | MEDLINE | ID: mdl-37227910

ABSTRACT

The brain computer interface is defined as the way of acquiring the brain signals that analyse and translates them into commands that are relayed to intelligent devices for carrying out various actions. Through number of BCI mechanism and approaches have been proposed by various scientists to empower the individuals for directly controlling their objects via their thoughts. However, the actual implementation and realization of this method faces number of challenging with low accuracy and less interoperability. In addition, the pre-processing signals and feature extraction process is further time consuming and less accurate. In order to overcome the mentioned issues, this paper proposes an accurate and highly inter-operable system using genetic fuzzy system along. The predictive model and analysis can be further improved using canonical correlation analysis. The proposed framework is validated and demonstrated using brain typing system analysis. The results are computed against accuracy, latency and interoperability of the signals received from brain with less SNR along with traditional method. The proposed mechanism shows approximately 87% improvement as compare to existing approaches during the simulation over various performance metrics.


Subject(s)
Brain-Computer Interfaces , Canonical Correlation Analysis , Humans , Electroencephalography/methods , Brain , Internet , Algorithms
3.
IEEE Access ; 9: 42483-42492, 2021.
Article in English | MEDLINE | ID: mdl-34786311

ABSTRACT

COVID-19 is an extremely dangerous disease because of its highly infectious nature. In order to provide a quick and immediate identification of infection, a proper and immediate clinical support is needed. Researchers have proposed various Machine Learning and smart IoT based schemes for categorizing the COVID-19 patients. Artificial Neural Networks (ANN) that are inspired by the biological concept of neurons are generally used in various applications including healthcare systems. The ANN scheme provides a viable solution in the decision making process for managing the healthcare information. This manuscript endeavours to illustrate the applicability and suitability of ANN by categorizing the status of COVID-19 patients' health into infected (IN), uninfected (UI), exposed (EP) and susceptible (ST). In order to do so, Bayesian and back propagation algorithms have been used to generate the results. Further, viterbi algorithm is used to improve the accuracy of the proposed system. The proposed mechanism is validated over various accuracy and classification parameters against conventional Random Tree (RT), Fuzzy C Means (FCM) and REPTree (RPT) methods.

4.
Sensors (Basel) ; 19(14)2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31323870

ABSTRACT

Recently, connected vehicles (CV) are becoming a promising research area leading to the concept of CV as a Service (CVaaS). With the increase of connected vehicles and an exponential growth in the field of online cab booking services, new requirements such as secure, seamless and robust information exchange among vehicles of vehicular networks are emerging. In this context, the original concept of vehicular networks is being transformed into a new concept known as connected and autonomous vehicles. Autonomous vehicular use yields a better experience and helps in reducing congestion by allowing current information to be obtained by the vehicles instantly. However, malicious users in the internet of vehicles may mislead the whole communication where intruders may compromise smart devices with the purpose of executing a malicious ploy. In order to prevent these issues, a blockchain technique is considered the best technique that provides secrecy and protection to the control system in real time conditions. In this paper, the issue of security in smart sensors of connected vehicles that can be compromised by expert intruders is addressed by proposing a blockchain framework. This study has further identified and validated the proposed mechanism based on various security criteria, such as fake requests of the user, compromise of smart devices, probabilistic authentication scenarios and alteration in stored user's ratings. The results have been analyzed against some existing approach and validated with improved simulated results that offer 79% success rate over the above-mentioned issues.

5.
Sensors (Basel) ; 19(9)2019 May 07.
Article in English | MEDLINE | ID: mdl-31067811

ABSTRACT

: Due to advances in technology, research in healthcare using a cyber-physical system (CPS) opens innovative dimensions of services. In this paper, the authors propose an energy- and service-level agreement (SLA)-efficient cyber physical system for E-healthcare during data transmission services. Furthermore, the proposed phenomenon will be enhanced to ensure the security by detecting and eliminating the malicious devices/nodes involved during the communication process through advances in the ad hoc on-demand distance vector (AODV) protocol. The proposed framework addresses the two security threats, such as grey and black holes, that severely affect network services. Furthermore, the proposed framework used to find the different network metrics such as average qualifying service set (QSS) paths, mean hop and energy efficiency of the quickest path. The framework is simulated by calculating the above metrics in mutual cases i.e. without the contribution of malevolent nodes and with the contribution of malevolent nodes over service time, hop count and energy constraints. Further, variation of SLA and energy shows their expediency in the selection of efficient network metrics.

SELECTION OF CITATIONS
SEARCH DETAIL
...