Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Recent Pat Nanotechnol ; 18(2): 305-320, 2024.
Article in English | MEDLINE | ID: mdl-38197418

ABSTRACT

Neurological disorders (ND) have affected a major part of our society and have been a challenge for medical and biosciences for decades. However, many of these disorders haven't responded well to currently established treatment approaches. The fact that many active pharmaceutical ingredients can't get to their specified action site inside the body is one of the main reasons for this failure. Extracellular and intracellular central nervous system (CNS) barriers prevent the transfer of drugs from the blood circulation to the intended location of the action. Utilizing nanosized drug delivery technologies is one possible way to overcome these obstacles. These nano-drug carriers outperform conventional dosage forms in many areas, including good drug encapsulation capacity, targeted drug delivery, less toxicity, and enhanced therapeutic impact. As a result, nano-neuroscience is growing to be an intriguing area of research and a bright alternative approach for delivering medicines to their intended action site for treating different neurological and psychiatric problems. In this review, we have included a short overview of the pathophysiology of neurological diseases, a detailed discussion about the significance of nanocarriers in NDs, and a focus on its recent advances. Finally, we highlighted the patented technologies and market trends, including the predictive analysis for the years 2021-2028.


Subject(s)
Bulk Drugs , Disease Management , Central Nervous System , Drug Carriers , Drug Delivery Systems , Patents as Topic
2.
Article in English | MEDLINE | ID: mdl-37849227

ABSTRACT

The prevalence of thyroid cancer (TC) is more common in women and is up to 43% in patients aged between 45-65 years. The battle against TC is hampered by the lack of effective diagnostic and therapeutic approaches. The effectiveness of surgical procedures, such as thyroidectomy and nutraceutical treatments, are accompanied by several difficulties and still require further research. Alternatively, the DNA-damaging traditional model of chemotherapy is linked to poor solubility, untoward systemic effects, and associated cytotoxicity, instituting an urgent need to establish a specialized, factual, and reliable delivery tool. In order to overcome the limitations of conventional delivery systems, nanotechnology-based delivery tools have shown the potential of articulating endless inherent implementations. The probable benefits of emerging nanotechnology-based diagnostic techniques include rapid screening and early illness diagnosis, which draws investigators to investigate and assess the possibility of this treatment for TC. Subsequently, organic (e.g., liposomes, polymer-based, and dendrimers) and inorganic (e.g., gold, carbon-based, mesoporous silica, magnetic, and quantum dots) NPs and hybrids thereof (liposome-silica, chitosan-carbon, and cell membrane-coated) have been projected for TC biomarker screening, therapy, and detection, providing better outcomes than traditional diagnostic and treatment techniques. Therefore, this review aims to offer a broad perspective on nanoplatform in TC, accompanied by present and potential future treatment options and screening techniques. The goal of cancer therapy has traditionally been to "search a thorn in a hayloft"; therefore, this article raises the possibility of treating TC using nano-oncotherapeutics, which might be useful clinically and will encourage future researchers to explore this tool's potential and drawbacks.

3.
AAPS PharmSciTech ; 24(6): 151, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37438613

ABSTRACT

Since earlier times, dermatological remedies have been utilized to treat diseases associated with pain, irritation, and skin conditions. Compared to other routes of drug delivery, topical delivery of drugs offers several benefits. Scientists are investigating different alterations in dosage forms in addition to existing topical formulations such as ointments, gels, creams, lotions, and ointments to significantly improve the permeation of drugs and enhance the pharmacological efficacy of medications that are poorly absorbed via the skin. Conventional formulations have a plethora of problems viz. poor absorption, no target specificity, low spreadability, and inadequate bioavailability which leads the researchers toward developing novel formulations like nanoemulsions. The nanoemulsion can enhance the gradient in concentration and thermodynamic movement toward the epidermis and enhance the penetration of its constituents. However, due to its difficult application, nanoemulsion's lower viscosity limited its use in transdermal delivery. Thus, the development of nanoemulsion-based hydrogels has shown to be a successful strategy for removing obstacles from existing drug formulations. The simple application, expedient spreadability, non-stickiness, safety, and effectiveness of nanoemulsion-based hydrogel have led to substantial growth in their research in recent years. This review gives a brief idea about the prevalence of skin diseases, skin as an obstacle for drug delivery, and recent research insights to combat these obstacles. The work highlights the mechanism of drug release via nanoemulsion, hydrogels, and nanoemulsion-based hydrogels with reference to recent research on hydrophobic and hydrophilic drugs.


Subject(s)
Drug Delivery Systems , Hydrogels , Ointments , Diffusion , Biological Availability
SELECTION OF CITATIONS
SEARCH DETAIL
...