Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 852704, 2022.
Article in English | MEDLINE | ID: mdl-35651777

ABSTRACT

Arsenic (As) stress provokes various toxic effects in plants that disturbs its photosynthetic potential and hampers growth. Ethylene and selenium (Se) have shown regulatory interaction in plants for metal tolerance; however, their synergism in As tolerance through modification of the antioxidant enzymes and hormone biosynthesis needs further elaboration. With this in view, we investigated the impact of ethylene and Se in the protection of photosynthetic performance against As stress in mustard (Brassica juncea L.). Supplementation with ethephon (2-chloroethylphosphonic acid; ethylene source) and/or Se allayed the negative impact of As-induced toxicity by limiting As content in leaves, enhancing the antioxidant defense system, and decreasing the accumulation of abscisic acid (ABA). Ethylene plus Se more prominently regulated stomatal behavior, improved photosynthetic capacity, and mitigated As-induced effects. Ethephon in the presence of Se decreased stress ethylene formation and ABA accumulation under As stress, resulting in improved photosynthesis and growth through enhanced reduced glutathione (GSH) synthesis, which in turn reduced the oxidative stress. In both As-stressed and non-stressed plants treated with ethylene action inhibitor, norbornadiene, resulted in increased ABA and oxidative stress with reduced photosynthetic activity by downregulating expression of ascorbate peroxidase and glutathione reductase, suggesting the involvement of ethylene in the reversal of As-induced toxicity. These findings suggest that ethephon and Se induce regulatory interaction between ethylene, ABA accumulation, and GSH metabolism through regulating the activity and expression of antioxidant enzymes. Thus, in an economically important crop (mustard), the severity of As stress could be reduced through the supplementation of both ethylene and Se that coordinate for maximum stress alleviation.

2.
Environ Sci Pollut Res Int ; 29(32): 49029-49049, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35212900

ABSTRACT

This study aimed to test the efficiency of ethylene (Eth; 200 µL L-1 ethephon) in presence or absence of nitrogen (N; 80 mg N kg-1 soil) in protecting photosynthetic apparatus from copper (Cu; 100 mg Cu kg-1 soil) stress in mustard (Brassica juncea L.) and to elucidate the physio-biochemical modulation for Eth plus N-induced Cu tolerance. Elevated Cu-accrued reductions in photosynthesis and growth were accompanied by significantly higher Cu accumulation in leaves and oxidative stress with reduced assimilation of N and sulfur (S). Ethylene in coordination with N considerably reduced Cu accumulation, lowered lipid peroxidation, lignin accumulation, and contents of reactive oxygen species (hydrogen peroxide, H2O2, and superoxide anion, O2•-), and mitigated the negative effect of Cu on N and S assimilation, accumulation of non-protein thiols and phytochelatins, enzymatic, and non-enzymatic antioxidants (activity of ascorbate peroxidase, APX, and glutathione reductase, GR; content of reduced glutathione, GSH, and ascorbate, AsA), cell viability, photosynthesis, and growth. Overall, the effect of ethylene-nitrogen synergism was evident on prominently mitigating Cu stress and protecting photosynthesis. The approach of supplementing ethylene with N may be used as a potential tool to restrain Cu stress, and protect photosynthesis and growth of mustard plants.


Subject(s)
Antioxidants , Mustard Plant , Antioxidants/metabolism , Copper/metabolism , Ethylenes/metabolism , Glutathione/metabolism , Glutathione Reductase/metabolism , Hydrogen Peroxide/metabolism , Nitrogen/metabolism , Oxidative Stress , Photosynthesis , Soil
3.
Plant Physiol Biochem ; 155: 523-534, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32836198

ABSTRACT

Phytotoxicity of metals constraints plants health, metabolism and productivity. The sustainable approaches for minimizing major metals-accrued phytotoxicity have been least explored. The gasotransmitters signaling molecules such as nitric oxide (NO) and hydrogen sulfide (H2S) play a significant role in the mitigation of major consequences of metals stress. Versatile gaseous signaling molecules, NO and H2S are involved in the regulation of various physiological processes in plants and their tolerance to abiotic stresses. However, literature available on NO or H2S stand alone, and the major insights into the roles of NO and/or H2S in plant tolerance, particularly to metals, remained unclear. Given above, this paper aimed to (a) briefly overview metals and highlight their major phytotoxicity; (b) appraises literature reporting potential mechanisms underlying the roles of NO and H2S in plant-metal tolerance; (c) crosstalk on NO and H2S in relation to plant metal tolerance. Additionally, major aspects so far unexplored in the current context have also been mentioned.


Subject(s)
Hydrogen Sulfide/metabolism , Metals/toxicity , Nitric Oxide/metabolism , Plants , Stress, Physiological , Gasotransmitters/physiology
4.
Front Plant Sci ; 11: 675, 2020.
Article in English | MEDLINE | ID: mdl-32547583

ABSTRACT

Phytotoxicity of metals significantly contributes to the major loss in agricultural productivity. Among all the metals, copper (Cu) is one of essential metals, where it exhibits toxicity only at its supra-optimal level. Elevated Cu levels affect plants developmental processes from initiation of seed germination to the senescence, photosynthetic functions, growth and productivity. The use of plant growth regulators/phytohormones and other signaling molecules is one of major approaches for reversing Cu-toxicity in plants. Nitric oxide (NO) is a versatile and bioactive gaseous signaling molecule, involved in major physiological and molecular processes in plants. NO modulates responses of plants grown under optimal conditions or to multiple stress factors including elevated Cu levels. The available literature in this context is centered mainly on the role of NO in combating Cu stress with partial discussion on underlying mechanisms. Considering the recent reports, this paper: (a) overviews Cu uptake and transport; (b) highlights the major aspects of Cu-toxicity on germination, photosynthesis, growth, phenotypic changes and nutrient-use-efficiency; (c) updates on NO as a major signaling molecule; and (d) critically appraises the Cu-significance and mechanisms underlying NO-mediated alleviation of Cu-phytotoxicity. The outcome of the discussion may provide important clues for future research on NO-mediated mitigation of Cu-phytotoxicity.

5.
Plants (Basel) ; 9(6)2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32575782

ABSTRACT

This investigation tested the efficiency of nitric oxide (NO) in alleviation of Cu-induced adverse impacts on seed germination and photosynthesis in Indian mustard (Brassica juncea L.). Pre-treatment of B. juncea seeds with sodium nitroprusside (SNP; NO donor) significantly improved the seed germination rate and also alleviated Cu-accrued oxidative stress. However, in the absence of NO, Cu caused a higher reduction in seed germination rate. The presence of NO strengthened the antioxidant defense system (glutathione reductase, ascorbate peroxidase, and superoxide dismutase) and thereby sustained the lower lipid peroxidation, reduced H2O2 content, and thiobarbituric acid reactive substances in Cu-exposed seeds. NO pre-treated seeds also retained a higher amylase activity and exhibited an improved seed germination rate. This effect of NO under Cu stress was also seen in plants originated from the NO pre-treated seeds, where the role of NO pre-treatment was reflected in the improved photosynthetic potential of B. juncea. Overall, NO pre-treatment not only improved the germination rate in seeds but also carried its effects in the grown seedlings evidenced as improved photosynthesis and growth. Potential mechanisms involved in the action of NO pre-treatment included NO-mediated significant strengthening of the antioxidant defense system and decreases in Cu-caused oxidative stress parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...