Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Rapid Commun ; : e2400258, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018482

ABSTRACT

This study explores the synthesis and characterization of superabsorbent hydrogels derived from chemically modified gum Arabic, designed for controlled folic acid release. The synthesis involves a two-step process: carboxymethylation followed by grafting with 2-hydroxyethyl methacrylate via gamma irradiation. The resulting hydrogels exhibit enhanced mechanical strength and controlled diffusivity, essential for nutrient delivery systems. Key factors such as copolymer composition and irradiation dose are investigated, affecting the synthesis process. Systematic studies of swelling behaviors reveal that the hydrogel achieves a maximum swelling of 888.1% at 40 °C. The hydrogels are loaded with folic acid, and in vitro, sustained release profiles are examined under various pH conditions. The maximum release of 83.3% is observed after 24 h at pH 7.0, following a Korsmeyer-Peppas release mechanism. Different characterization techniques, confirm the successful synthesis and unique properties of the superabsorbent hydrogels. Rheological behavior analysis, scanning electron microscopy, and biocompatibility assessments provide a comprehensive understanding of the hydrogel structures. Gamma irradiation ensures a homogeneous network structure, crucial for optimal swelling behavior and mechanical properties. This research highlights the potential of eco-friendly biopolymer hydrogels in precise drug delivery applications, leveraging the safety and process control benefits of gamma irradiation.

2.
Int J Biol Macromol ; 267(Pt 1): 131388, 2024 May.
Article in English | MEDLINE | ID: mdl-38608982

ABSTRACT

We developed a facile method for the fabrication of a biodegradable delivery system composed of two blocks: curdlan and curcumin. This was achieved by chemical functionalization of curdlan through tosylation, amination followed by complexation with curcumin. A comprehensive evaluation of structural characterization and component stability showed that cur-cum complex exhibited better anticancer properties with enhanced thermal properties. The cur-cum complex shows pH sensitive sustained release behaviour with higher release at acidic pH and kinetic data of drug release follows the Korsmeyer-Peppas model. The cur-cum complex has ability to block the proliferation of the MCF-7 cell line as revealed by MTT assay which showed increased toxicity of cur-cum complex against these cell lines. The results obtained from western blot analysis demonstrated that the co-administration of cur and cum effectively induced apoptosis in MCF-7 cells. This effect was observed by a considerable upregulation of the Bcl-2/Bax ratio, a decline in mRNA expression of LDHA, level of lactate and LDH activity. The results clearly depict the role of functionalized curdlan as efficient carrier for curcumin delivery with prolonged, sustained release and enhanced bioavailability, thereby improving the overall anticancer activity.


Subject(s)
Apoptosis , Breast Neoplasms , Curcumin , Drug Liberation , beta-Glucans , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/administration & dosage , beta-Glucans/chemistry , beta-Glucans/pharmacology , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , MCF-7 Cells , Female , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Cell Proliferation/drug effects , Hydrogen-Ion Concentration
3.
Int J Biol Macromol ; 260(Pt 2): 129412, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262826

ABSTRACT

Chemical modification represents a highly efficacious approach for enhancing the physicochemical characteristics and biological functionalities of natural polysaccharides. However, not all polysaccharides have considerable pharmacologic activity; so, appropriate chemical modification strategies can be selected in accordance with the distinct structural properties of polysaccharides to aid in improving and encouraging the presentation of their biological activities. Hence, there has been a growing interest in the chemical alteration of polysaccharides due to their various properties such as antioxidant, anticoagulant, antiviral, anticancer, biomedical, antibacterial, and immunomodulatory effects. This paper offers a comprehensive examination of recent scientific advancements produced over the past four years in the realm of unique chemical and functional modifications in curdlan and pullulan structures. This review aims to provide readers with an overview of the structural activity correlations observed in the backbone structures of curdlan and pullulan, as well as the diverse chemical modification processes employed for these polysaccharides. Additionally, the review aims to examine the effects of combining various bioactive molecules with chemically modified curdlan and pullulan and explore their potential applications in various important fields.


Subject(s)
Glucans , beta-Glucans , Glucans/chemistry , Polysaccharides/chemistry
4.
Heliyon ; 9(9): e19439, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809794

ABSTRACT

Recently, natural dyes are being explored all over the world as safer and highly sustainable bio-based alternatives to synthetic dyes. Agricultural wastes and plant by-products are the most commonly explored alternatives with dual benefits of waste reclamation and sustainable dye production with extra value-adds. Hypercium scabrum plant contains interesting bio-dye molecules with high flavonoids and tannin contents. The present study aims at exploring the potential of H. scabrum plant extract to color wool textiles with a focus on sustainable bio-dye production and fastness properties. The extracted bio-dye was quantitatively (for total phenolic (2.733 mg per CE/g) and total flavonoid (1.140 mg per GAE/g) content using the Folin-Ciocalteu method) and qualitatively (UV-Vis, FT-IR, and EDX) characterized. The effect of dyeing parameters like pH (2-8), temperature (60-90 °C), dry-weight content of plant material as a dye (25-150% o.w.f.), and dyeing time (15-120 min) on color strength (K/S) values were assessed. Color fastness assays showed good resistance to light, washing, and rubbing. The effect of artificial aging (Xenon arc lamp) on the color strength of dyed wool yarns under different exposure times (0-48 h) was explored. The highest color fading occurred in control dyed samples with a first-order rate constant of 131.57 h-1 and a half-life period of 5.26 x 10-3 h. Color difference (ΔE) values suggested that mordanted samples showed less fading compared to control dyed samples at equal times of Xenon exposure. Additionally, the dyed samples were washed in double distilled water, tap water, and 4 g/L NaCl solution to check their effects on the corresponding K/S values while 4 g/L NaCl solution mimics the real conditions of perspiration. Maximum color leaching occurred in 4 g/L NaCl washing with a first-order rate constant of 11.57 min-1. Cost analysis of the dye extraction and dyeing procedure revealed that the process is sustainable and economical. Thus, the use of H. scabrum whole plant can provide a clean, economical, and sustainable source of alternative natural dyes that can be used to substitute synthetic analogs.

5.
J Adv Res ; 7(3): 473-82, 2016 May.
Article in English | MEDLINE | ID: mdl-27222752

ABSTRACT

In the present study Terminalia chebula was used as an eco-friendly natural colorant for sustainable textile coloration of woolen yarn with primary emphasis on thermodynamic and kinetic adsorption aspects of dyeing processes. Polyphenols and ellagitannins are the main coloring components of the dye extract. Assessment of the effect of pH on dye adsorption showed an increase in adsorption capacity with decreasing pH. Effect of temperature on dye adsorption showed 80 °C as optimum temperature for wool dyeing with T. chebula dye extract. Two kinetic equations, namely pseudo first-order and pseudo second-order equations, were employed to investigate the adsorption rates. Pseudo second-order model provided the best fit (R (2) = 0.9908) to the experimental data. The equilibrium adsorption data were fitted by Freundlich and Langmuir isotherm models. The adsorption behavior accorded well (R (2) = 0.9937) with Langmuir isotherm model. Variety of eco-friendly and sustainable shades were developed in combination with small amount of metallic mordants and assessed in terms of colorimetric (CIEL(∗) a (∗) b (∗) and K/S) properties measured using spectrophotometer under D65 illuminant (10° standard observer). The fastness properties of dyed woolen yarn against light, washing, dry and wet rubbing were also evaluated.

SELECTION OF CITATIONS
SEARCH DETAIL
...