Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
bioRxiv ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38979156

ABSTRACT

Cellular senescence, a stress-induced stable proliferation arrest associated with an inflammatory Senescence-Associated Secretory Phenotype (SASP), is a cause of aging. In senescent cells, Cytoplasmic Chromatin Fragments (CCFs) activate SASP via the anti-viral cGAS/STING pathway. PML protein organizes PML nuclear bodies (NBs), also involved in senescence and anti-viral immunity. The HIRA histone H3.3 chaperone localizes to PML NBs in senescent cells. Here, we show that HIRA and PML are essential for SASP expression, tightly linked to HIRA's localization to PML NBs. Inactivation of HIRA does not directly block expression of NF-κB target genes. Instead, an H3.3-independent HIRA function activates SASP through a CCF-cGAS-STING-TBK1-NF-κB pathway. HIRA physically interacts with p62/SQSTM1, an autophagy regulator and negative SASP regulator. HIRA and p62 co-localize in PML NBs, linked to their antagonistic regulation of SASP, with PML NBs controlling their spatial configuration. These results outline a role for HIRA and PML in regulation of SASP.

2.
Genome Biol ; 18(1): 58, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28351383

ABSTRACT

BACKGROUND: Age-associated epigenetic changes are implicated in aging. Notably, age-associated DNA methylation changes comprise a so-called aging "clock", a robust biomarker of aging. However, while genetic, dietary and drug interventions can extend lifespan, their impact on the epigenome is uncharacterised. To fill this knowledge gap, we defined age-associated DNA methylation changes at the whole-genome, single-nucleotide level in mouse liver and tested the impact of longevity-promoting interventions, specifically the Ames dwarf Prop1 df/df mutation, calorie restriction and rapamycin. RESULTS: In wild-type mice fed an unsupplemented ad libitum diet, age-associated hypomethylation was enriched at super-enhancers in highly expressed genes critical for liver function. Genes harbouring hypomethylated enhancers were enriched for genes that change expression with age. Hypermethylation was enriched at CpG islands marked with bivalent activating and repressing histone modifications and resembled hypermethylation in liver cancer. Age-associated methylation changes are suppressed in Ames dwarf and calorie restricted mice and more selectively and less specifically in rapamycin treated mice. CONCLUSIONS: Age-associated hypo- and hypermethylation events occur at distinct regulatory features of the genome. Distinct longevity-promoting interventions, specifically genetic, dietary and drug interventions, suppress some age-associated methylation changes, consistent with the idea that these interventions exert their beneficial effects, in part, by modulation of the epigenome. This study is a foundation to understand the epigenetic contribution to healthy aging and longevity and the molecular basis of the DNA methylation clock.


Subject(s)
Aging/genetics , Epigenesis, Genetic , Epigenomics , Gene Expression Regulation , Longevity/genetics , Regulatory Sequences, Nucleic Acid , Animals , Cluster Analysis , CpG Islands , DNA Methylation , Dwarfism/genetics , Enhancer Elements, Genetic , Epigenomics/methods , Female , Liver/metabolism , Male , Mice , Organ Specificity/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...