Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 256(Pt 1): 128253, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37989430

ABSTRACT

In recent years, hydrogels as drug carriers have been receiving great interest due to their ability to change their behavior in response to one or more external stimuli. However, their initial burst release profile limits their practical applications. Therefore, we prepared a bio-based hydrogel nanocomposite (HNC) using starch, itaconic acid, acrylic acid and gelatin in the presence of CNF/ZnO-based nanohybrid (ZONH) and used it to evaluate the pH-sensitive drug release properties in different pH solutions. The prepared HNCs were analyzed using various spectroscopic and microscopic techniques. The BET analysis and swelling test of the HNC indicated improved porosity and swelling capacity due to the addition of ZONH. From the drug release study, sustained drug release rate was observed at pH 4 than those at pH 7.4 and 9, indicating controlled release as well as pH responsive behavior of the HNC. Moreover, the drug released HNC was reused as a photocatalyst for dye degradation and achieved good degradation (%). The antibacterial activity of ZONH and HNC was observed against EC and SA bacterial strains from the antibacterial test. In summary, the prepared HNC can be considered as a potential sustainable DDS for biomedical applications as well as a photocatalyst for dye contaminated water treatment.


Subject(s)
Nanocomposites , Nanofibers , Succinates , Zinc Oxide , Hydrogels/chemistry , Zinc Oxide/chemistry , Gelatin , Starch , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanocomposites/chemistry , Hydrogen-Ion Concentration , Drug Liberation
2.
Colloids Surf B Biointerfaces ; 234: 113727, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38157766

ABSTRACT

Bacterial and fungal pathogens forming oral biofilms present significant public health challenges due to the failure of antimicrobial drugs. The ability of biofilms to lower pH levels results in dental plaque, leading to gingivitis and cavities. Nanoparticles (NPs) have attracted considerable interest for drug delivery and, thus, as a solution to biofilm-related microbial infections. A novel strategy in this regard involves using pH-responsive polymeric NPs within the acidic microenvironment of oral biofilms. The acidity of the oral biofilm microenvironment is governed by carbohydrate metabolism, accumulation of lactic acid, and extracellular DNA of extracellular polymeric substances by oral biofilm-forming microbial pathogens. This acidity also provides an opportunity to enhance antibacterial activity against biofilm cells using pH-responsive drug delivery approaches. Thus, various polymeric NPs loaded with poorly soluble drugs and responsive to the acidic pH of oral biofilms have been developed. This review focuses on various forms of such polymeric NPs loaded with drugs. The fundamental mechanisms of action of pH-responsive polymeric NPs, their cytological toxicity, and in vivo efficacy testing are thoroughly discussed.


Subject(s)
Anti-Infective Agents , Nanoparticles , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Biofilms , Polymers/chemistry , Nanoparticles/chemistry , Hydrogen-Ion Concentration
3.
Microb Pathog ; 185: 106433, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37913826

ABSTRACT

Green-synthesized nanoparticles provide an effective strategy for inhibiting microbial pathogenesis by affecting biofilm formation, quorum sensing (QS), and other surface properties of microorganisms. QS is a density-dependent communication signaling cascade that regulates biofilm formation and other pathogenic factors of Pseudomonas aeruginosa. In this context, the effect of phytofabricated silver nanoparticles (CC-AgNPs) synthesized using Cuphea carthagenensis extract on biofilm, QS, and QS-dependent virulence factors of P. aeruginosa were evaluated in this study. CC-AgNPs demonstrated significant attenuation of biofilm, QS, and QS-dependent virulence factors at sub-MICs. A significant inhibition of 88.39 ± 4.32 %, 79.64 ± 3.31 %, 73.07 ± 3.0 %, and 61.67 ± 1.5 % of biofilm formation, quorum sensing, pyocyanin, and LasB elastase, respectively was reported in the study at 20 µg/mL. The study also demonstrated a significant reduction of LasA Staphylolytic activity and 91.37 ± 1.05 % exoprotease production in comparison to untreated control. The lower concentrations of CC-AgNPs also demonstrated significant attenuation of biofilm and other virulence factors suggesting the strong potency of NPs against P. aeruginosa. XTT analysis reported the effect of CC-AgNPs on sessile cells of P. aeruginosa without impacting growth of planktonic cells at sub-MICs. Cell-proliferation study in human cell lines (HEK 293 and Caco-2 cells) demonstrated the safe nature of CC-AgNPs at tested concentrations. This study is novel in a way that environmentally friendly CC-AgNPs were used to inhibit QS at sub-MICs without killing the tested strains, therefore, could be developed as an anti-virulent drug to overcome biofilm and antimicrobial resistance problems.


Subject(s)
Metal Nanoparticles , Quorum Sensing , Humans , Virulence Factors/metabolism , Pseudomonas aeruginosa , Silver/pharmacology , Caco-2 Cells , HEK293 Cells , Anti-Bacterial Agents/pharmacology , Biofilms
4.
Sci Total Environ ; 886: 163998, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37172832

ABSTRACT

A rapid rise in population, extensive anthropogenic activities including agricultural practices, up-scaled industrialization, massive deforestation, etc. are the leading causes of environmental degradation. Such uncontrolled and unabated practices have affected the quality of environment (water, soil, and air) synergistically by accumulating huge quantities of organic and inorganic pollutants in it. Environmental contamination is posing a threat to the existing life on the Earth, therefore, demands the development of sustainable environmental remediation approaches. The conventional physiochemical remediation approaches are laborious, expensive, and time-consuming. In this regard, nanoremediation has emerged as an innovative, rapid, economical, sustainable, and reliable approach to remediate various environmental pollutants and minimize or attenuate the risks associated with them. Owing to their unique properties such as high surface area to volume ratio, enhanced reactivity, tunable physical parameters, versatility, etc. nanoscale objects have gained attention in environmental clean-up practices. The current review highlights the role of nanoscale objects in the remediation of environmental contaminants to minimize their impact on human, plant, and animal health; and air, water, and soil quality. The aim of the review is to provide information about the applications of nanoscale objects in dye degradation, wastewater management, heavy metal and crude oil remediation, and mitigation of gaseous pollutants including greenhouse gases.


Subject(s)
Environmental Pollutants , Environmental Restoration and Remediation , Soil Pollutants , Animals , Humans , Soil Pollutants/analysis , Soil , Water
5.
Int J Biol Macromol ; 237: 124206, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36990413

ABSTRACT

A facile one-pot approach was adopted to prepare a polysaccharide-based hydrogel of oxidized starch (OS)-chitosan. The synthetic monomer-free, eco-friendly hydrogel was prepared in an aqueous solution and employed for controlled drug release application. The starch was first oxidized under mild conditions to prepare its bialdehydic derivative. Subsequently, the amino group-containing a modified polysaccharide, "chitosan" was introduced on the backbone of OS via a dynamic Schiff-base reaction. The bio-based hydrogel was obtained via a one-pot in-situ reaction, where functionalized starch acts as a macro-cross-linker that contributes structural stability and integrity to the hydrogel. The introduction of chitosan contributes to stimuli-responsive properties and thus pH-sensitive swelling behavior was obtained. The hydrogel showed its potential as a pH-dependent controlled drug release system and a maximum of 29 h sustained release period was observed for ampicillin sodium salt drug. In vitro studies confirmed that the prepared drug-loaded hydrogels showed excellent antibacterial ability. Most importantly, the hydrogel could find potential use in the biomedical field due to its facile reaction conditions, biocompatibility along with controlled releasing ability of the encapsulated drug.


Subject(s)
Chitosan , Starch , Chitosan/chemistry , Delayed-Action Preparations/chemistry , Hydrogels/chemistry , Polysaccharides/chemistry , Drug Liberation , Excipients , Hydrogen-Ion Concentration
6.
Int J Mol Sci ; 24(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36769343

ABSTRACT

To explore changes in proteins and metabolites under stress circumstances, genomics, proteomics, and metabolomics methods are used. In-depth research over the previous ten years has gradually revealed the fundamental processes of plants' responses to environmental stress. Abiotic stresses, which include temperature extremes, water scarcity, and metal toxicity brought on by human activity and urbanization, are a major cause for concern, since they can result in unsustainable warming trends and drastically lower crop yields. Furthermore, there is an emerging reliance on agrochemicals. Stress is responsible for physiological transformations such as the formation of reactive oxygen, stomatal opening and closure, cytosolic calcium ion concentrations, metabolite profiles and their dynamic changes, expression of stress-responsive genes, activation of potassium channels, etc. Research regarding abiotic stresses is lacking because defense feedbacks to abiotic factors necessitate regulating the changes that activate multiple genes and pathways that are not properly explored. It is clear from the involvement of these genes that plant stress response and adaptation are complicated processes. Targeting the multigenicity of plant abiotic stress responses caused by genomic sequences, transcripts, protein organization and interactions, stress-specific and cellular transcriptome collections, and mutant screens can be the first step in an integrative approach. Therefore, in this review, we focused on the genomes, proteomics, and metabolomics of tomatoes under abiotic stress.


Subject(s)
Proteomics , Solanum lycopersicum , Humans , Solanum lycopersicum/genetics , Genomics , Plants/metabolism , Metabolomics , Stress, Physiological/genetics , Gene Expression Regulation, Plant
7.
Appl Biochem Biotechnol ; 195(5): 3257-3294, 2023 May.
Article in English | MEDLINE | ID: mdl-36580260

ABSTRACT

Ethnomedicinal plants are a rich reservoir of active compounds with potent pharmacological properties. Therefore, plants could serve as a source for the discovery of active antimicrobial and antioxidant agents and are focused because of their low toxicity, economic viability, easy availability, etc. In this regard, phytochemical analyses, viz. ß-carotene, total sugar, reducing sugar, vitamin C, total carotenoids, protein, total phenolic content (TPC), and total flavonoid content (TFC) of 20 ethnomedicinal plants of North East India (NEI) were evaluated in this study. The antibacterial activity against human pathogens and antioxidant potential of plant extracts was also demonstrated. The minimum inhibitory concentration (MIC80), minimum bactericidal concentration (MBC), and total antibacterial activity (TAA) of the active extracts were evaluated against Pseudomonas aeruginosa and Chromobacterium violaceum. The active extracts were also examined for antibiofilm as well as anti-pyocyanin activities against P. aeruginosa and anti-QS activity against C. violaceum at sub-MICs. The study demonstrated variable concentration of phytochemicals of the extracts, viz. ß-carotene (0.29-8.91 mg g-1), total sugar (2.92-30.6 mM), reducing sugar (0.44-14.5 mM), vitamin C (8.41-31.3 mg g-1), total carotenoids (14.9-267.0 mg g-1), protein (5.65-283 mg g-1), TPC (5.32-31.0 mg GAE/g DW), and TFC (1.74-68.2 mg QE/g DW). The plant extracts also exhibited potent antioxidant and antibacterial activities against both Gram-positive and Gram-negative bacteria. Some of the extracts also demonstrated significant biofilm inhibition and eradication, anti-pyocyanin, and anti-QS activities at sub-MICs. The selected ethnomedicinal plants are rich in phytochemicals and demonstrated potent antioxidant, antibacterial, and antibiofilm activities, thus could serve as the important source of novel antioxidant and antimicrobial agents.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Humans , Anti-Bacterial Agents/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , beta Carotene , Bacteria , Gram-Negative Bacteria , Gram-Positive Bacteria , Plant Extracts/chemistry , Plants , Anti-Infective Agents/pharmacology , Flavonoids/pharmacology , Flavonoids/analysis , Phytochemicals/pharmacology , Phytochemicals/analysis , Phenols/pharmacology , Biofilms , Ascorbic Acid , Sugars , India
8.
Chemosphere ; 314: 137625, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36572360

ABSTRACT

This study investigated an integrated approach to the biowaste transformation and valorization of byproducts. Biochar obtained from the banana pseudostem was calcined to synthesize a heterogeneous catalyst and sustainably prepare a highly alkaline solution. The ash was utilized directly as a heterogeneous catalyst in biodiesel production from waste cooking oil. At the same time, an alkaline solution prepared from the ash was used for delignification and recovery of lignin from bamboo leaves by the hydrothermal reaction. Techniques like Fourier-transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller (BET), Transmission electron microscopy (TEM), and Energy dispersive X-ray (EDX) were applied to characterized the catalyst. The alkaline solution was analyzed with Atomic absorption spectroscopy (AAS). The Response surface methodology (RSM) technique was considered for the optimization of different parameters in the transesterification and hydrothermal reaction. Under the optimized condition, waste cooking oil (WCO) to Fatty acid methyl ester (FAME) conversion was 97.56 ± 0.11%, and lignin recovery was 43.20 ± 0.45%. While at the best operating pyrolysis temperature, the liquid fraction yield from the banana pseudostem (500 °C) was 38.10 ± 0.31 wt%. This integrated study approach encourages the inexpensive, sustainable, and environment-friendly pathway for synthesizing catalysts and preparing a highly alkaline solution for the valorization of biowaste into biofuel and biochemicals.


Subject(s)
Biofuels , Musa , Lignin , Esterification , Catalysis , Plant Leaves , Plant Oils/chemistry
9.
Int J Biol Macromol ; 228: 68-77, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36566806

ABSTRACT

Gelatin, being a naturally derived biomacromolecule shows good biocompatibility and biodegradability and hence turn out to be a potential biomaterial in synthesizing adhesive hydrogel. However, to achieve significant adhesive strength under wet condition and good mechanical properties, gelatin is functionalised with dopamine and acrylic acid. Here, inspired from nature, we have developed a gelatin based adhesive hydrogel for wet surfaces by incorporating dopamine into gelatin-poly(acrylic acid) chain. The synthesized hydrogel demonstrate good mechanical strength, high stretchability, reversibility, self-healing and dynamic adhesive behaviour along with long term reusability. The adhesive strength of the synthesized hydrogel to tissue surface was found to be 6.5 KPa when applied under submerged condition. Moreover, the swelling behaviour of the hydrogel reveals that hydrogel have limited swellability thereby retaining adhesive property under fully swollen state. Haemolysis results reveals the biocompatible nature of the hydrogel. Thus this hydrogel emerge to be a promising bioadhesive for application in various fields mostly in biomedical devices.


Subject(s)
Bivalvia , Hydrogels , Animals , Adhesives , Gelatin , Dopamine , Seafood
10.
Microbiol Res ; 264: 127173, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36037563

ABSTRACT

Pseudomonas aeruginosa, a ubiquitous opportunistic and nosocomial biofilm-forming pathogen with complex, interconnected and hierarchical nature of QS systems (Las, Rhl, PQS, and IQS), is posing the biggest challenge to the healthcare sector and have made current chemotherapies incapable. Conventional antibiotics designed to intercept the biochemical or physiological processes precisely of planktonic microorganisms exert extreme selective pressure and develop resistance against them thereby emphasizing the development of alternative therapeutic approaches. Additionally, quorum sensing induced pathogenic microbial biofilms and production of virulence factors have intensified the pathogenicity, drug resistance, recurrence of infections, hospital visits, morbidity, and mortality many-folds. In this regard, QS could be a potential druggable target and the discovery of QS inhibiting agents as an anti-virulent measure could serve as an alternative therapeutic approach to conventional antibiotics. Quorum quenching (QQ) is a preferred strategy to combat microbial infections since it attenuates the pathogenicity of microbes and enhances the microbial biofilm susceptibility to antibiotics, thus qualifying as a suitable target for drug discovery. This review discusses the QS-induced pathogenicity of P. aeruginosa, the hierarchical QS systems, and QS inhibition as a drug discovery approach to complement classical antibiotic strategy.


Subject(s)
Pseudomonas Infections , Quorum Sensing , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/pharmacology , Biofilms , Drug Discovery , Humans , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa , Virulence Factors
11.
Front Plant Sci ; 13: 831589, 2022.
Article in English | MEDLINE | ID: mdl-35677250

ABSTRACT

The paper and pulp industry (PPI) is one of the largest industries that contribute to the growing economy of the world. While wood remains the primary raw material of the PPIs, the demand for paper has also grown alongside the expanding global population, leading to deforestation and ecological imbalance. Wood-based paper production is associated with enormous utilization of water resources and the release of different wastes and untreated sludge that degrades the quality of the environment and makes it unsafe for living creatures. In line with this, the indigenous handmade paper making from the bark of Daphne papyracea, Wall. ex G. Don by the Monpa tribe of Arunachal Pradesh, India is considered as a potential alternative to non-wood fiber. This study discusses the species distribution modeling of D. papyracea, community-based production of the paper, and glycome profiling of the paper by plant cell wall glycan-directed monoclonal antibodies. The algorithms used for ecological and geographical modeling indicated the maximum predictive distribution of the plant toward the western parts of Arunachal Pradesh. It was also found that the suitable distribution of D. papyracea was largely affected by the precipitation and temperature variables. Plant cell walls are primarily made up of cellulose, hemicellulose, lignin, pectin, and glycoproteins. Non-cellulosic cell wall glycans contribute significantly to various physical properties such as density, crystallinity, and tensile strength of plant cell walls. Therefore, a detailed analysis of non-cellulosic cell wall glycan through glycome profiling and glycosyl residue composition analysis is important for the polymeric composition and commercial processing of D. papyracea paper. ELISA-based glycome profiling results demonstrated that major classes of cell wall glycans such as xylan, arabinogalactans, and rhamnogalacturonan-I were present on D. papyracea paper. The presence of these polymers in the Himalayan Buddhist handmade paper of Arunachal Pradesh is correlated with its high tensile strength. The results of this study imply that non-cellulosic cell wall glycans are required for the production of high-quality paper. To summarize, immediate action is required to strengthen the centuries-old practice of handmade paper, which can be achieved through education, workshops, technical know-how, and effective marketing aid to entrepreneurs.

12.
Analyst ; 147(12): 2859-2869, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35638294

ABSTRACT

Microscopes, bright-field (BF) and fluorescence microscopes, in particular, are ubiquitous for clinical diagnostics, cellular and microbiological investigations and in research laboratories. However, the size, cost, fragility and need for skilled personnel to operate these tools restrict their use in resource-limited settings. As an alternative platform, herein, we report a flexible multimodal imaging system that operates in BF and fluorescence modes using a smartphone. Our device utilizes the inbuilt primary camera of phones, and with the aid of easily available optical components, the designed platform is transformed into a high-throughput microscopic device that performs on par with that of a laboratory-grade microscope. The designed platform operates at three different optical magnifications and yields a lateral resolution of 1.21 µm over an acceptable field-of-view (FoV) of diameter ∼4530 µm. The versatility of the device has been demonstrated through imaging of standard microbeads and human blood samples both in BF and fluorescence modes of imaging. Furthermore, the designed imaging platform is equipped with an on-board cell recognition feature which has been obtained through developing a smartphone application for automatic cell counting with high precision.


Subject(s)
Smartphone , Humans , Microscopy, Fluorescence/methods
13.
Chemosphere ; 300: 134497, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35398470

ABSTRACT

The green synthesis of nanoparticles (NPs) is the safest, ecofriendly, cost-effective, and non-hazardous approach of nanotechnology. In the current study, we described the green synthesis of silver nanoparticles (AgNPs) using Cuphea carthagenensis aqueous leaf extract as a reducing, capping, and stabilizing agent. The study aims at the synthesis, characterization, optimization, and determination of the antibacterial activity of Cc-AgNPs against clinically important human pathogens. Coating of cotton fabrics with Cc-AgNPs and their efficacy against skin infection causing organisms was also evaluated. Furthermore, antioxidant activity, growth assay and time kill assay of Cc-AgNPs were also performed in the study. The biosynthesized Cc-AgNPs were characterized by UV-visible spectrometry, energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). The spectroscopic and microscopic analysis demonstrated biosynthesis of face-centered cubic (fcc) crystalline spherical Cc-AgNPs with an average particle size of 10.65 ± 0.1 nm. Optimized peak synthesis of Cc-AgNPs was reported at pH7, 55 °C, 4 mM silver nitrate, and 5:45 (plant extract: silver nitrate). Cc-AgNPs exhibited potent antioxidant effect and antibacterial activity against both Gram-positive and Gram-negative bacteria. The lowest MIC (15 µg/ml) and MBC (25 µg/ml) values were reported against S. typhimurium. The Cc-AgNPs coated fabrics demonstrated potent antibacterial activity against tested strains. This application could be helpful in wound healing management. Furthermore, the hemolytic analysis demonstrated that Cc-AgNPs exhibit non-toxic nature against Red Blood Cells (RBCs) at the tested concentrations. In conclusion, the investigation demonstrated a fast, stable, and eco-friendly approach to the biosynthesis of Cc-AgNPs along with their antibacterial and antioxidant properties.


Subject(s)
Cuphea , Metal Nanoparticles , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Extracts/pharmacology , Silver/pharmacology , Silver Nitrate , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
14.
Braz J Microbiol ; 52(4): 1701-1718, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34558029

ABSTRACT

The assembly of microorganisms over a surface and their ability to develop resistance against available antibiotics are major concerns of interest. To survive against harsh environmental conditions including known antibiotics, the microorganisms form a unique structure, referred to as biofilm. The mechanism of biofilm formation is triggered and regulated by quorum sensing, hostile environmental conditions, nutrient availability, hydrodynamic conditions, cell-to-cell communication, signaling cascades, and secondary messengers. Antibiotic resistance, escape of microbes from the body's immune system, recalcitrant infections, biofilm-associated deaths, and food spoilage are some of the problems associated with microbial biofilms which pose a threat to humans, veterinary, and food processing sectors. In this review, we focus in detail on biofilm formation, its architecture, composition, genes and signaling cascades involved, and multifold antibiotic resistance exhibited by microorganisms dwelling within biofilms. We also highlight different physical, chemical, and biological biofilm control strategies including those based on plant products. So, this review aims at providing researchers the knowledge regarding recent advances on the mechanisms involved in biofilm formation at the molecular level as well as the emergent method used to get rid of antibiotic-resistant and life-threatening biofilms.


Subject(s)
Anti-Bacterial Agents , Bacterial Physiological Phenomena , Biofilms , Drug Resistance, Microbial , Quorum Sensing , Anti-Bacterial Agents/pharmacology , Bacterial Physiological Phenomena/drug effects , Biofilms/drug effects , Drug Resistance, Microbial/drug effects , Drug Resistance, Microbial/genetics , Quorum Sensing/drug effects
15.
J Ethnopharmacol ; 269: 113699, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33340600

ABSTRACT

ETHNOPHARMCOLOGICAL RELEVANCE: Microbial biofilm formation, a quorum sensing (QS) regulated process, is one of the major causes of nosocomial and chronic infections, foodborne diseases, and associated deaths. Various approaches have been used to eradicate the menace of biofilm. Ethnomedicinal plants as potent antibiofilm agents are gaining a lot of interest in an era where the drug resistance is increasing and the availability of potent antibiotics is no longer promised. In this context, the methanol extract of Cuphea carthagenensis (CCMD), an ethno-medicinal and culinary herb, was evaluated as an antibiofilm and anti-QS agent against Pseudomonas aeruginosa. AIM OF THE STUDY: The aim of the study is to evaluate the antibiofilm and anti-QS activity of an ethnomedicinal plant against a strong biofilm forming microorganism, P. aeruginosa. METHODS: Antibiofilm activity of CCMD was demonstrated at different concentrations by Tissue Culture Plate, Test Tube method and other microscopic techniques. The effect of CCMD on QS and QS-related virulence factors viz. Pyocyanin, exopolymeric substance matrix (EPS), total protease, elastase, pyoverdin and swimming motility in P. aeruginosa were also evaluated. Antioxidant activity (DPPH & FRAP), total phenolic and flavonoid content were also checked. In order to determine the composition of the extract HPLC analysis was also performed. RESULTS: In vitro study demonstrated a significant inhibition of biofilm formation (81.88 ± 2.57%) as well as production of QS-dependent virulence factors in P. aeruginosa. The extract also inhibited violacein production (83.31 ± 2.77%) in Chromobacterium violaceum which correlates with the reduction in QS-mediated virulence factors. The extract showed 64.79% ± 0.83% DPPH scavenging activity and reduction of ferricyanide complex (Fe3+) to the ferrous form (Fe2+) in DPPH and FRAP assay, respectively. Furthermore, the extract showed thermal stability and does not have any growth inhibitory effect on P. aeruginosa. The HPLC analysis demonstrated the presence of ellagic acid, ascorbic acid and hippuric acid in the extract. CONCLUSION: This work is the first to demonstrate that C. carthagenensis can attenuate biofilm formation and QS-mediated virulence factors of P. aeruginosa. Further investigation is required to use this ethnomedicinal plant (CCMD) as an important source of antibiofilm agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cuphea/chemistry , Medicine, Traditional/methods , Plant Extracts/chemistry , Plant Extracts/pharmacology , Pseudomonas aeruginosa/physiology , Virulence Factors/antagonists & inhibitors , Antioxidants/pharmacology , Ascorbic Acid , Biofilms/drug effects , Chromatography, High Pressure Liquid , Chromobacterium/drug effects , Ellagic Acid , Flavonoids/analysis , Hippurates , Indoles/antagonists & inhibitors , Phenols/analysis , Plant Leaves/chemistry , Pseudomonas aeruginosa/drug effects , Quorum Sensing/drug effects , Virulence Factors/metabolism
16.
Plants (Basel) ; 9(10)2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33050190

ABSTRACT

Artocarpus heterophyllus Lam. (AH) and Artocarpus lakoocha Roxb. (AL) are two endemic plants that grow on the Asian continent. To date, their applications have been aimed at using their fruit as a food source or for some of their therapeutic virtues. In this study, attention was given to the flowers of AH and AL. Initially, the cytotoxicity of the phytoextracts was assessed, and the content of minerals, phenols, and flavonoids was determined. Furthermore, some antioxidant components were identified by HPLC. Furthermore, the ability of AH and AL extracts to modulate the gene expression of some targets involved in the antioxidant response was studied. The results obtained highlighted the nutritional and antioxidant value of the AH and AL flower extracts. This study will contribute to enhancing the use of AH and AL flowers as potential supplements in human nutrition.

SELECTION OF CITATIONS
SEARCH DETAIL
...