Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 8(7)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35887510

ABSTRACT

The present systematic research on cultural, morphological, and pathogenic variability was carried out on eighty isolates of Sclerotinia sclerotiorum collected from major common bean production belts of North Kashmir. The isolates were found to vary in both cultural and morphological characteristics such as colony color and type, colony diameter, number of days for sclerotia initiation, sclerotia number per plate, sclerotial weight, and size. The colony color ranged between white and off-white with the majority. The colony was of three types, in majority smooth, some fluffy, and a few fluffy-at-center-only. Colony diameter ranged between 15.33 mm and 29 mm after 24 h of incubation. The isolates took 4 to 7 days for initiation of sclerotia and varied in size, weight, and number per plate ranging between 14 and 51.3. The sclerotial arrangement pattern on plates was peripheral, sub peripheral, peripheral, and subperipheral, arranged at the rim and scattered. A total of 22 Mycelial compatibility groups (MCGs) were formed with seven groups constituted by a single isolate. The isolates within MCGs were mostly at par with each other. The six isolates representing six MCGs showed variability in pathogenicity with isolate G04 as the most and B01 as the least virulent. The colony diameter and disease scores were positively correlated. Sclerotia were observed to germinate both myceliogenically and carpogenically under natural temperate conditions of Kashmir. Germplasm screening revealed a single resistant line and eleven partially resistant lines against most virulent isolates.

2.
J Fungi (Basel) ; 8(6)2022 May 24.
Article in English | MEDLINE | ID: mdl-35736038

ABSTRACT

Mycoparasites cause serious losses in profitable mushroom farms worldwide. The negative impact of green mold (Trichoderma harzianum) reduces cropping surface and damages basidiomes, limiting production and harvest quality. The goal of the current study was to evaluate new generation fungicides, to devise suitable management strategies against the green mold disease under prevailing agro-climatic conditions. Six non-systemic and five systemic fungitoxicants were evaluated for their efficacy against pathogen, T. harzianum, and host, Agaricus bisporus, under in vitro conditions. Among non-systemic fungicides, chlorothalonil and prochloraz manganese with mean mycelium inhibition of 76.87 and 93.40 percent, respectively, were highly inhibitory against the pathogen. The least inhibition percentage of 7.16 of A. bisporus was exhibited by chlorothalonil. Under in vivo conditions, use of captan 50 WP resulted in a maximum yield of button mushroom of 14.96 kg/qt. So far, systemic fungicides were concerned, carbendazim proved extremely inhibitory to the pathogen (89.22%), with least inhibitory effect on host mycelium (1.56%). However, application of non-systemic fungitoxicants further revealed that fungicide prochloraz manganese 50 WP at 0.1-0.2 percent or chlorothalonil 50 WP at 0.2 percent, exhibited maximum disease control of 89.06-96.30 percent. Moreover, the results of systemic fungitoxicants showed that carbendazim 50 WP or thiophanate methyl 70 WP at 0.1 percent reduced disease to 2.29-3.69 percent, hence exhibiting the disease control of 80.11-87.66 percent. Under in vivo conditions, fungicide myclobutanil at 0.1 percent concentration produced the maximum button mushroom production of 12.87 kg/q.

SELECTION OF CITATIONS
SEARCH DETAIL
...