Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Theor Appl Genet ; 137(2): 48, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345612

ABSTRACT

KEY MESSAGE: Characterisation and genetic mapping of a key gene defining root morphology in bread wheat. Root morphology is central to plants for the efficient uptake up of soil water and mineral nutrients. Here we describe a conditional mutant of hexaploid wheat (Triticum aestivum L.) that when grown in soil with high Ca2+ develops a larger rhizosheath accompanied with shorter roots than the wild type. In wheat, rhizosheath size is a reliable surrogate for root hair length and this was verified in the mutant which possessed longer root hairs than the wild type when grown in high Ca2+ soil. We named the mutant Stumpy and showed it to be due to a single semi-dominant mutation. The short root phenotype at high Ca2+ was due to reduced cellular elongation which might also explain the long root hair phenotype. Analysis of root cell walls showed that the polysaccharide composition of Stumpy roots is remodelled when grown at non-permissive (high) Ca2+ concentrations. The mutation mapped to chromosome 7B and sequencing of the 7B chromosomes in both wild type and Stumpy identified a candidate gene underlying the Stumpy mutation. As part of the process to determine whether the candidate gene was causative, we identified wheat lines in a Cadenza TILLING population with large rhizosheaths but accompanied with normal root length. This finding illustrates the potential of manipulating the gene to disconnect root length from root hair length as a means of developing wheat lines with improved efficiency of nutrient and water uptake. The Stumpy mutant will be valuable for understanding the mechanisms that regulate root morphology in wheat.


Subject(s)
Soil , Triticum , Triticum/metabolism , Mutation , Chromosome Mapping , Water/metabolism , Plant Roots/genetics
2.
Metabolomics ; 15(11): 144, 2019 10 20.
Article in English | MEDLINE | ID: mdl-31630279

ABSTRACT

INTRODUCTION: Frost events lead to A$360 million of yield losses annually to the Australian wheat industry, making improvement of chilling and frost tolerance an important trait for breeding. OBJECTIVES: This study aimed to use metabolomics and lipidomics to explore genetic variation in acclimation potential to chilling and to identify metabolite markers for chilling tolerance in wheat. METHODS: We established a controlled environment screening assay that is able to reproduce field rankings of wheat germplasm for chilling and frost tolerance. This assay, together with targeted metabolomics and lipidomics approaches, were used to compare metabolite and lipid levels in flag leaves of two wheat varieties with contrasting chilling tolerance. RESULTS: The sensitive variety Wyalkatchem showed a strong reduction in amino acids after the first cold night, followed by accumulation of osmolytes such as fructose, glucose, putrescine and shikimate over a 4-day period. Accumulation of osmolytes is indicative of acclimation to water stress in Wyalkatchem. This response was not observed for tolerant variety Young. The two varieties also displayed significant differences in lipid accumulation. Variation in two lipid clusters, resulted in a higher unsaturated to saturated lipid ratio in Young after 4 days cold treatment and the lipids PC(34:0), PC(34:1), PC(35:1), PC(38:3), and PI(36:4) were the main contributors to the unsaturated to saturated ratio change. This indicates that Young may have superior ability to maintain membrane fluidity following cold exposure, thereby avoiding membrane damage and water stress observed for Wyalkatchem. CONCLUSION: Our study suggests that metabolomics and lipidomics markers could be used as an alternative phenotyping method to discriminate wheat varieties with differences in cold acclimation.


Subject(s)
Adaptation, Physiological , Cold-Shock Response , Metabolomics , Triticum/metabolism , Lipidomics , Phenotype
3.
Ann Bot ; 119(8): 1333-1341, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28402495

ABSTRACT

Background and Aims: Long root hairs enable the efficient uptake of poorly mobile nutrients such as phosphorus. Mapping the chromosomal locations of genes that control root hair length can help exploit the natural variation within crops to develop improved cultivars. Genetic stocks of the wheat cultivar 'Chinese Spring' were used to map genes that control root hair length. Methods: Aneuploid stocks of 'Chinese Spring' were screened using a rapid method based on rhizosheath size and then selected lines were assayed for root hair length to identify chromosomes harbouring genes controlling root hair length. A series of lines with various fractional deletions of candidate chromosomes were then screened to map the root hair loci more accurately. A line with a deletion in chromosome 5A was analysed with a 90 000 single nucleotide polymorphism (SNP) array. The phosphorus acquisition efficiency (PAE) of one deletion line was compared with that of euploid 'Chinese Spring' by growing the seedlings in pots at low and luxury phosphorus supplies. Key Results: Chromosomes 1A, 1D and 5A were found to harbour genes controlling root hair length. The 90 000 SNP array identified two candidate genes controlling root hair length located on chromosome 5A. The line with a deletion in chromosome 5A had root hairs that were approx. 20 % shorter than euploid 'Chinese Spring', but this was insufficient to reduce its PAE. Conclusions: A rapid screen for rhizosheath size enabled chromosomal regions controlling root hair length to be mapped in the wheat cultivar 'Chinese Spring' and subsequent analysis with an SNP array identified candidate genes controlling root hair length. The difference in root hair length between euploid 'Chinese Spring' and a deletion line identified in the rapid screen was still apparent, albeit attenuated, when the seedlings were grown on a fully fertilized soil.


Subject(s)
Aneuploidy , Chromosome Mapping , Plant Roots/growth & development , Triticum/genetics , Bread , Genes, Plant , Polymorphism, Single Nucleotide , Sequence Deletion
4.
Theor Appl Genet ; 129(4): 729-739, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26747046

ABSTRACT

KEY MESSAGE: The aluminium tolerance of durum wheat was markedly enhanced by introgression of TaALMT1 and TaMATE1B from bread wheat. In contrast to bread wheat, TaMATE1B conferred greater aluminium tolerance than TaALMT1. Durum wheat (tetraploid AABB, Triticum turgidum) is a species that grows poorly on acid soils due to its sensitivity of Al(3+). By contrast, bread wheat (hexaploid AABBDD, T. aestivum) shows a large variation in Al(3+) tolerance which can be attributed to a major gene (TaALMT1) located on chromosome 4D as well as to other genes of minor effect such as TaMATE1B. Genotypic variation for Al(3+) tolerance in durum germplasm is small and the introgression of genes from bread wheat is one option for enhancing the ability of durum wheat to grow on acid soils. Introgression of a large fragment of the 4D chromosome previously increased the Al(3+) tolerance of durum wheat demonstrating the viability of transferring the TaALMT1 gene to durum wheat to increase its Al(3+) tolerance. Here, we used a ph1 (pairing homoeologous) mutant of durum wheat to introgress a small fragment of the 4D chromosome harboring the TaALMT1 gene. The size of the 4D chromosomal fragment introgressed into durum wheat was estimated by markers, fluorescence in situ hybridisation and real-time quantitative PCR. In a parallel strategy, we introgressed TaMATE1B from bread wheat into durum wheat using conventional crosses. Both genes separately increased the Al(3+) tolerance of durum wheat in both hydroponics and soil cultures. In contrast to bread wheat, the TaMATE1B gene was more effective than TaALMT1 in increasing the Al(3+) tolerance of durum wheat grown on acid soil.


Subject(s)
Aluminum/chemistry , Crosses, Genetic , Genes, Plant , Organic Anion Transporters/genetics , Triticum/genetics , Chromosome Mapping , Chromosomes, Plant , Plant Breeding , Plant Proteins/genetics , Polyploidy , Soil/chemistry , Triticum/drug effects
5.
J Exp Bot ; 66(15): 4527-36, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25969556

ABSTRACT

Rhizosheaths comprise soil that adheres to plant roots and, in some species, are indicative of root hair length. In this study, the genetics of rhizosheath size in wheat was investigated by screening the progeny of multiparent advanced generation intercrosses (MAGIC). Two MAGIC populations were screened for rhizosheath size using a high throughput method. One MAGIC population was developed from intercrosses between four parents (4-way) and the other from intercrosses between eight parents (8-way). Transgressive segregation for rhizosheath size was observed in both the 4-way and 8-way MAGIC populations. A quantitative trait loci (QTL) analysis of the 4-way population identified six major loci located on chromosomes 2B, 4D, 5A, 5B, 6A, and 7A together accounting for 42% of the variation in rhizosheath size. Rhizosheath size was strongly correlated with root hair length and was robust across different soil types in the absence of chemical constraints. Rhizosheath size in the MAGIC populations was a reliable surrogate for root hair length and, therefore, the QTL identified probably control root hair elongation. Members of the basic helix-loop-helix family of transcription factors have previously been identified to regulate root hair length in Arabidopsis and rice. Since several wheat members of the basic helix-loop-helix family of genes are located within or near the QTL, these genes are candidates for controlling the long root hair trait. The QTL for rhizosheath size identified in this study provides the opportunity to implement marker-assisted selection to increase root hair length for improved phosphate acquisition in wheat.


Subject(s)
Plant Proteins/genetics , Quantitative Trait Loci , Soil , Triticum/genetics , Chromosome Mapping , High-Throughput Nucleotide Sequencing , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Triticum/metabolism
6.
BMC Genomics ; 15: 697, 2014 Aug 20.
Article in English | MEDLINE | ID: mdl-25142467

ABSTRACT

BACKGROUND: Marine phytoplankton are responsible for 50% of the CO2 that is fixed annually worldwide and contribute massively to other biogeochemical cycles in the oceans. Diatoms and coccolithophores play a significant role as the base of the marine food web and they sequester carbon due to their ability to form blooms and to biomineralise. To discover the presence and regulation of short non-coding RNAs (sRNAs) in these two important phytoplankton groups, we sequenced short RNA transcriptomes of two diatom species (Thalassiosira pseudonana, Fragilariopsis cylindrus) and validated them by Northern blots along with the coccolithophore Emiliania huxleyi. RESULTS: Despite an exhaustive search, we did not find canonical miRNAs in diatoms. The most prominent classes of sRNAs in diatoms were repeat-associated sRNAs and tRNA-derived sRNAs. The latter were also present in E. huxleyi. tRNA-derived sRNAs in diatoms were induced under important environmental stress conditions (iron and silicate limitation, oxidative stress, alkaline pH), and they were very abundant especially in the polar diatom F. cylindrus (20.7% of all sRNAs) even under optimal growth conditions. CONCLUSIONS: This study provides first experimental evidence for the existence of short non-coding RNAs in marine microalgae. Our data suggest that canonical miRNAs are absent from diatoms. However, the group of tRNA-derived sRNAs seems to be very prominent in diatoms and coccolithophores and maybe used for acclimation to environmental conditions.


Subject(s)
Diatoms/genetics , Microalgae/genetics , RNA, Small Untranslated/genetics , Diatoms/physiology , Interspersed Repetitive Sequences , Microalgae/physiology , Oxidative Stress , RNA, Small Untranslated/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Sequence Analysis, RNA , Up-Regulation
7.
Physiol Plant ; 151(3): 230-42, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24433537

ABSTRACT

Phosphorus (P) deficiency in some plant species triggers the release of organic anions such as citrate and malate from roots. These anions are widely suggested to enhance the availability of phosphate for plant uptake by mobilizing sparingly-soluble forms in the soil. Carazinho is an old wheat (Triticum aestivum) cultivar from Brazil, which secretes citrate constitutively from its root apices, and here we show that it also produces relatively more biomass on soils with low P availability than two recent Australian cultivars that lack citrate efflux. To test whether citrate efflux explains this phenotype, we generated two sets of near-isogenic lines that differ in citrate efflux and compared their biomass production in different soil types and with different P treatments in glasshouse experiments and field trials. Citrate efflux improved relative biomass production in two of six glasshouse trials but only at the lowest P treatments where growth was most severely limited by P availability. Furthermore, citrate efflux provided no consistent advantage for biomass production or yield in multiple field trials. Theoretical modeling indicates that the effectiveness of citrate efflux in mobilizing soil P is greater as the volume of soil into which it diffuses increases. As efflux from these wheat plants is restricted to the root apices, the potential for citrate to mobilize sufficient P to increase shoot biomass may be limited. We conclude that Carazinho has other attributes that contribute to its comparatively good performance in low-P soils.


Subject(s)
Citric Acid/metabolism , Phosphorus/metabolism , Plant Roots/metabolism , Biological Transport/genetics , Biomass , Genotype , Organophosphorus Compounds/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Soil/chemistry , Time Factors , Triticum/genetics , Triticum/growth & development , Triticum/metabolism
8.
Plant Physiol ; 161(2): 880-92, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23204428

ABSTRACT

The TaMATE1B gene (for multidrug and toxic compound extrusion) from wheat (Triticum aestivum) was isolated and shown to encode a citrate transporter that is located on the plasma membrane. TaMATE1B expression in roots was induced by iron deficiency but not by phosphorus deficiency or aluminum treatment. The coding region of TaMATE1B was identical in a genotype showing citrate efflux from root apices (cv Carazinho) to one that lacked citrate efflux (cv Egret). However, sequence upstream of the coding region differed between these two genotypes in two ways. The first difference was a single-nucleotide polymorphism located approximately 2 kb upstream from the start codon in cv Egret. The second difference was an 11.1-kb transposon-like element located 25 bp upstream of the start codon in cv Carazinho that was absent from cv Egret. The influence of these polymorphisms on TaMATE1B expression was investigated using fusions to green fluorescent protein expressed in transgenic lines of rice (Oryza sativa). Fluorescence measurements in roots of rice indicated that 1.5- and 2.3-kb regions upstream of TaMATE1B in cv Carazinho (which incorporated 3' regions of the transposon-like element) generated 20-fold greater expression in the apical 1 mm of root compared with the native promoter in cv Egret. By contrast, fluorescence in more mature tissues was similar in both cultivars. The presence of the single-nucleotide polymorphism alone consistently generated 2-fold greater fluorescence than the cv Egret promoter. We conclude that the transposon-like element in cv Carazinho extends TaMATE1B expression to the root apex, where it confers citrate efflux and enhanced aluminum tolerance.


Subject(s)
Citric Acid/metabolism , DNA Transposable Elements/genetics , Plant Proteins/genetics , Plant Roots/genetics , Triticum/genetics , Aluminum/metabolism , Aluminum/pharmacology , Base Sequence , Biological Transport/drug effects , Cell Membrane/metabolism , Gene Expression Regulation, Plant/drug effects , Genotype , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Microscopy, Confocal , Molecular Sequence Data , Oryza/genetics , Oryza/metabolism , Phylogeny , Plant Proteins/classification , Plant Proteins/metabolism , Plant Roots/metabolism , Plants, Genetically Modified , Polymorphism, Single Nucleotide , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Species Specificity , Triticum/classification , Triticum/metabolism
9.
J Cell Sci ; 125(Pt 15): 3590-600, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22595520

ABSTRACT

MicroRNAs are short non-coding RNAs involved in post-transcriptional regulation of multiple messenger RNA targets. The miR-1/miR-206 family is expressed during skeletal muscle differentiation and is an integral component of myogenesis. To better understand miR-1/miR-206 function during myoblast differentiation we identified novel target mRNAs by microarray and characterized their function in C2C12 myoblasts. Candidate targets from the screen were experimentally validated together with target genes that were predicted by three different algorithms. Some targets characterised have a known function in skeletal muscle development and/or differentiation and include Meox2, RARB, Fzd7, MAP4K3, CLCN3 and NFAT5, others are potentially novel regulators of myogenesis, such as the chromatin remodelling factors Smarcd2 and Smarcb1 or the anti-apoptotic protein SH3BGRL3. The expression profiles of confirmed target genes were examined during C2C12 cell myogenesis. We found that inhibition of endogenous miR-1 and miR-206 by antimiRs blocked the downregulation of most targets in differentiating cells, thus indicating that microRNA activity and target interaction is required for muscle differentiation. Finally, we show that sustained expression of validated miR-1 and/or miR-206 targets resulted in increased proliferation and inhibition of C2C12 cell myogenesis. In many cases the expression of genes related to non-muscle cell fates, such as chondrogenesis, was activated. This indicates that the concerted downregulation of multiple microRNA targets is not only crucial to the skeletal muscle differentiation program but also serves to prevent alternative cell fate choices.


Subject(s)
MicroRNAs/genetics , Myoblasts/physiology , Animals , Cell Differentiation/genetics , Gene Expression Regulation , Humans , Mice , MicroRNAs/metabolism , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Myoblasts/cytology , Myoblasts/metabolism , NIH 3T3 Cells , Transfection
10.
Plant J ; 66(5): 863-76, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21401744

ABSTRACT

MicroRNAs play a key role in the control of plant development and response to adverse environmental conditions. For example, microRNA395 (miR395), which targets three out of four isoforms of ATP sulfurylase, the first enzyme of sulfate assimilation, as well as a low-affinity sulfate transporter, SULTR2;1, is strongly induced by sulfate deficiency. However, other components of sulfate assimilation are induced by sulfate starvation, so that the role of miR395 is counterintuitive. Here, we describe the regulation of miR395 and its targets by sulfate starvation. We show that miR395 is important for the increased translocation of sulfate to the shoots during sulfate starvation. MiR395 together with the SULFUR LIMITATION 1 transcription factor maintain optimal levels of ATP sulfurylase transcripts to enable increased flux through the sulfate assimilation pathway in sulfate-deficient plants. Reduced expression of ATP sulfurylase (ATPS) alone affects both sulfate translocation and flux, but SULTR2;1 is important for the full rate of sulfate translocation to the shoots. Thus, miR395 is an integral part of the regulatory circuit controlling plant sulfate assimilation with a complex mechanism of action.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , DNA-Binding Proteins/metabolism , MicroRNAs/metabolism , Sulfates/metabolism , Transcription Factors/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant , Genetic Loci , MicroRNAs/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plant Shoots/genetics , Plant Shoots/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Stress, Physiological , Sulfate Adenylyltransferase/metabolism
11.
BMC Genomics ; 12: 62, 2011 Jan 26.
Article in English | MEDLINE | ID: mdl-21266089

ABSTRACT

BACKGROUND: Heliconius butterflies are an excellent system for studies of adaptive convergent and divergent phenotypic traits. Wing colour patterns are used as signals to both predators and potential mates and are inherited in a Mendelian manner. The underlying genetic mechanisms of pattern formation have been studied for many years and shed light on broad issues, such as the repeatability of evolution. In Heliconius melpomene, the yellow hindwing bar is controlled by the HmYb locus. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that have key roles in many biological processes, including development. miRNAs could act as regulators of genes involved in wing development, patterning and pigmentation. For this reason we characterised miRNAs in developing butterfly wings and examined differences in their expression between colour pattern races. RESULTS: We sequenced small RNA libraries from two colour pattern races and detected 142 Heliconius miRNAs with homology to others found in miRBase. Several highly abundant miRNAs were differentially represented in the libraries between colour pattern races. These candidates were tested further using Northern blots, showing that differences in expression were primarily due to developmental stage rather than colour pattern. Assembly of sequenced reads to the HmYb region identified hme-miR-193 and hme-miR-2788; located 2380 bp apart in an intergenic region. These two miRNAs are expressed in wings and show an upregulation between 24 and 72 hours post-pupation, indicating a potential role in butterfly wing development. A search for miRNAs in all available H. melpomene BAC sequences (~2.5 Mb) did not reveal any other miRNAs and no novel miRNAs were predicted. CONCLUSIONS: Here we describe the first butterfly miRNAs and characterise their expression in developing wings. Some show differences in expression across developing pupal stages and may have important functions in butterfly wing development. Two miRNAs were located in the HmYb region and were expressed in developing pupal wings. Future work will examine the expression of these miRNAs in different colour pattern races and identify miRNA targets among wing patterning genes.


Subject(s)
Butterflies/genetics , MicroRNAs/genetics , Wings, Animal/metabolism , Animals , Blotting, Northern , Butterflies/growth & development , Evolution, Molecular , Female , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Male , Wings, Animal/growth & development
12.
FEBS Lett ; 583(9): 1422-6, 2009 May 06.
Article in English | MEDLINE | ID: mdl-19328789

ABSTRACT

High throughput Solexa sequencing technology was applied to identify microRNAs in somites of developing chicken embryos. We obtained 651,273 reads, from which 340,415 were mapped to the chicken genome representing 1701 distinct sequences. Eighty-five of these were known microRNAs and 42 novel miRNA candidates were identified. Accumulation of 18 of 42 sequences was confirmed by Northern blot analysis. Ten of the 18 sequences are new variants of known miRNAs and eight short RNAs are novel miRNAs. Six of these eight have not been reported by other deep sequencing projects. One of the six new miRNAs is highly enriched in somite tissue suggesting that deep sequencing of other specific tissues has the potential to identify novel tissue specific miRNAs.


Subject(s)
MicroRNAs/genetics , Somites/metabolism , Animals , Base Sequence , Blotting, Northern , Chick Embryo , Cloning, Molecular
13.
Dev Biol ; 321(2): 491-9, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18619954

ABSTRACT

The expression of three microRNAs, miR-1, miR-206 and miR-133 is restricted to skeletal myoblasts and cardiac tissue during embryo development and muscle cell differentiation, which suggests a regulation by muscle regulatory factors (MRFs). Here we show that inhibition of C2C12 muscle cell differentiation by FGFs, which interferes with the activity of MRFs, suppressed the expression of miR-1, miR-206 and miR-133. To further investigate the role of myogenic regulators (MRFs), Myf5, MyoD, Myogenin and MRF4 in the regulation of muscle specific microRNAs we performed gain and loss-of-function experiments in vivo, in chicken and mouse embryos. We found that directed expression of MRFs in the neural tube of chicken embryos induced ectopic expression of miR-1 and miR-206. Conversely, the lack of Myf5 but not of MyoD resulted in a loss of miR-1 and miR-206 expression. Taken together our results demonstrate differential requirements of distinct MRFs for the induction of microRNA gene expression during skeletal myogenesis.


Subject(s)
MicroRNAs/metabolism , Muscle Development/physiology , Muscle, Skeletal/metabolism , Myogenic Regulatory Factors/metabolism , Neural Tube/metabolism , Animals , Base Sequence , Blotting, Northern , Cell Differentiation/physiology , Cell Line , Chick Embryo , Fibroblast Growth Factors/metabolism , In Situ Hybridization , Mice , Molecular Sequence Data , Sequence Alignment
14.
FEBS Lett ; 580(22): 5185-8, 2006 Oct 02.
Article in English | MEDLINE | ID: mdl-16963026

ABSTRACT

RNA interference (RNAi) is an RNA degradation process that involves short, double-stranded RNAs (dsRNA) as sequence specificity factors. The natural function of the RNAi machinery is to generate endogenous short double-stranded RNAs to regulate gene expression. It has been shown that treatment of Plasmodium falciparum, the etiologic agent of malaria, with dsRNA induces degradation of the corresponding microRNA (miRNA), yet typical RNAi-associated genes have not been identifiable in the parasite genome. To clarify this discrepancy we set out to clone short RNAs from P. falciparum-infected red blood cells and from purified parasites. We did not find any short RNA that was not a rRNA or tRNA fragment. Indeed, only known human miRNAs were isolated in parasite preparations indicating that very few if any short RNAs exist in P. falciparum. This suggests a different mechanism than classical RNAi in observations of dsRNA-mediated degradation. Of the human miRNAs identified, the human miRNA mir-451 accumulates at a very high level in both infected and healthy red blood cells. Interestingly, mir-451 was not detectable in a series of immortalised cell lines representing progenitor stages of all major blood lineages, suggesting that mir-451 may play a role in the differentiation of erythroid cells.


Subject(s)
Erythrocytes/metabolism , MicroRNAs/metabolism , Plasmodium falciparum/metabolism , RNA Stability , RNA, Protozoan/metabolism , Animals , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cloning, Molecular , Erythrocytes/parasitology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Genome, Protozoan/drug effects , Genome, Protozoan/genetics , Humans , Malaria/genetics , Malaria/metabolism , MicroRNAs/genetics , Plasmodium falciparum/genetics , RNA Stability/drug effects , RNA Stability/genetics , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/pharmacology , RNA, Protozoan/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Small Interfering , RNA, Transfer/genetics , RNA, Transfer/metabolism
15.
Dev Dyn ; 235(8): 2185-91, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16804893

ABSTRACT

The microRNAs (miRNAs) are recently discovered short, noncoding RNAs, that regulate gene expression in metazoans. We have cloned short RNAs from chicken embryos and identified five new chicken miRNA genes. Genome analysis identified 17 new chicken miRNA genes based on sequence homology to previously characterized mouse miRNAs. Developmental Northern blots of chick embryos showed increased accumulation of most miRNAs analyzed from 1.5 days to 5 days except, the stem cell-specific mir-302, which was expressed at high levels at early stages and then declined. In situ analysis of mature miRNAs revealed the restricted expression of mir-124 in the central nervous system and of mir-206 in developing somites, in particular the developing myotome. In addition, we investigated how miR-206 expression is controlled during somite development using bead implants. These experiments demonstrate that fibroblast growth factor (FGF) -mediated signaling negatively regulates the initiation of mir-206 gene expression. This may be mediated through the effects of FGF on somite differentiation. These data provide the first demonstration that developmental signaling pathways affect miRNA expression. Thus far, miRNAs have not been studied extensively in chicken embryos, and our results show that this system can complement other model organisms to investigate the regulation of many other miRNAs.


Subject(s)
Avian Proteins/metabolism , Fibroblast Growth Factor 4/pharmacology , Gene Expression Regulation, Developmental/drug effects , Signal Transduction/drug effects , Somites/drug effects , Animals , Avian Proteins/genetics , Chick Embryo , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Somites/metabolism , Transcription, Genetic/genetics , Xenopus laevis/embryology , Xenopus laevis/metabolism
16.
FEBS Lett ; 580(9): 2195-200, 2006 Apr 17.
Article in English | MEDLINE | ID: mdl-16566924

ABSTRACT

MicroRNAs (miRNAs) are small regulatory molecules suppressing mRNA activity in metazoans. Here we describe two new miRNAs cloned from brain tissue of mouse embryos. These miRNAs are expressed mainly during embryogenesis and specifically in the central nervous system. We also established the expression patterns of three recently identified miRNAs that were found in our short RNA library. All of them were expressed in the brain and spinal chord but while miR-410 and miR-431 were central nervous system specific, miR-500 was also expressed in limb buds. In addition, the expression of miR-500 in limb buds showed very strong asymmetry in favour of the left hand side.


Subject(s)
Brain/embryology , Gene Expression Regulation, Developmental/physiology , Gene Silencing/physiology , Limb Buds/embryology , MicroRNAs/biosynthesis , Spinal Cord/embryology , Animals , Brain/cytology , Limb Buds/cytology , Mice , MicroRNAs/genetics , Organ Specificity/physiology , Spinal Cord/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...