Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 867531, 2022.
Article in English | MEDLINE | ID: mdl-35795343

ABSTRACT

Proline is a proteinogenic amino acid synthesized from glutamate and ornithine. Pyrroline-5-carboxylate synthetase and pyrroline-5-carboxylate reductase are the two key enzymes involved in proline synthesis from glutamate. On the other hand, ornithine-δ-aminotransferase converts ornithine to pyrroline 5-carboxylate (P5C), an intermediate in the synthesis of proline as well as glutamate. Both proline dehydrogenase and P5C dehydrogenase convert proline back to glutamate. Proline accumulation is widespread in response to environmental challenges such as high temperatures, and it is known to defend plants against unpropitious situations promoting plant growth and flowering. While proline accumulation is positively correlated with heat stress tolerance in some crops, it has detrimental consequences in others. Although it has been established that proline is a key osmolyte, its exact physiological function during heat stress and plant ontogeny remains unknown. Emerging evidence pointed out its role as an overriding molecule in alleviating high temperature stress (HTS) by quenching singlet oxygen and superoxide radicals. Proline cycle acts as a shuttle and the redox couple (NAD+/NADH, NADP+/NADPH) appears to be highly crucial for energy transfer among different cellular compartments during plant development, exposure to HTS conditions and also during the recovery of stress. In this review, the progress made in recent years regarding its involvement in heat stress tolerance is highlighted.

2.
PLoS One ; 14(9): e0222203, 2019.
Article in English | MEDLINE | ID: mdl-31536532

ABSTRACT

Members of the plant Heme Activator Protein (HAP) or NUCLEAR FACTOR Y (NF-Y) are trimeric transcription factor complexes composed of the NF-YA, NF-YB and NF-YC subfamilies. They bind to the CCAAT box in the promoter regions of the target genes and regulate gene expressions. Plant NF-Ys were reported to be involved in adaptation to several abiotic stresses as well as in development. In silico analysis of Sorghum bicolor genome resulted in the identification of a total of 42 NF-Y genes, among which 8 code for the SbNF-YA, 19 for SbNF-YB and 15 for the SbNF-YC subunits. Analysis was also performed to characterize gene structures, chromosomal distribution, duplication status, protein subcellular localizations, conserved motifs, ancestral protein sequences, miRNAs and phylogenetic tree construction. Phylogenetic relationships and ortholog predictions displayed that sorghum has additional NF-YB genes with unknown functions in comparison with Arabidopsis. Analysis of promoters revealed that they harbour many stress-related cis-elements like ABRE and HSE, but surprisingly, DRE and MYB elements were not detected in any of the subfamilies. SbNF-YA1, 2, and 6 were found upregulated under 200 mM salt and 200 mM mannitol stresses. While NF-YA7 appeared associated with high temperature (40°C) stress, NF-YA8 was triggered by both cold (4°C) and high temperature stresses. Among NF-YB genes, 7, 12, 15, and 16 were induced under multiple stress conditions such as salt, mannitol, ABA, cold and high temperatures. Likewise, NF-YC 6, 11, 12, 14, and 15 were enhanced significantly in a tissue specific manner under multiple abiotic stress conditions. Majority of the mannitol (drought)-inducible genes were also induced by salt, high temperature stresses and ABA. Few of the high temperature stress-induced genes are also induced by cold stress (NF-YA2, 4, 6, 8, NF-YB2, 7, 10, 11, 12, 14, 16, 17, NF-YC4, 6, 12, and 13) thus suggesting a cross talk among them. This work paves the way for investigating the roles of diverse sorghum NF-Y proteins during abiotic stress responses and provides an insight into the evolution of diverse NF-Y members.


Subject(s)
CCAAT-Binding Factor/genetics , Genes, Plant/genetics , Plant Proteins/genetics , Sorghum/genetics , Chromosome Mapping , Gene Expression Regulation, Plant , Genome-Wide Association Study , Phylogeny , Real-Time Polymerase Chain Reaction , Transcriptome
3.
J Immunoassay Immunochem ; 40(2): 149-158, 2019.
Article in English | MEDLINE | ID: mdl-30477402

ABSTRACT

This study was conducted to develop and evaluate protein-G-based lateral flow assay (LFA) for rapid serodiagnosis of brucellosis in various domesticated animal species. The assay diagnostic performance was tested with 144 reference and 356 field sera samples and then compared with other serological assays. Results revealed that LFA showed 89% and 99% sensitivity and specificity, respectively, when compared with competitive ELISA as the gold standard. This study demonstrated LFA alone as a potential serodiagnostic assay for rapid serodiagnosis of brucellosis in various domesticated animal species.


Subject(s)
Brucellosis/immunology , Nerve Tissue Proteins/immunology , Animals , Brucellosis/blood , Buffaloes , Cattle , Enzyme-Linked Immunosorbent Assay , Goats , Nerve Tissue Proteins/blood , Sheep , Swine
4.
Genes (Basel) ; 9(5)2018 May 03.
Article in English | MEDLINE | ID: mdl-29751546

ABSTRACT

Na⁺ transporters play an important role during salt stress and development. The present study is aimed at genome-wide identification, in silico analysis of sodium-proton antiporter (NHX) and sodium-proton exchanger (NHE)-type transporters in Sorghum bicolor and their expression patterns under varied abiotic stress conditions. In Sorghum, seven NHX and nine NHE homologs were identified. Amiloride (a known inhibitor of Na⁺/H⁺ exchanger activity) binding motif was noticed in both types of the transporters. Chromosome 2 was found to be a hotspot region with five sodium transporters. Phylogenetic analysis inferred six ortholog and three paralog groups. To gain an insight into functional divergence of SbNHX/NHE transporters, real-time gene expression was performed under salt, drought, heat, and cold stresses in embryo, root, stem, and leaf tissues. Expression patterns revealed that both SbNHXs and SbNHEs are responsive either to single or multiple abiotic stresses. The predicted protein⁻protein interaction networks revealed that only SbNHX7 is involved in the calcineurin B-like proteins (CBL)- CBL interacting protein kinases (CIPK) pathway. The study provides insights into the functional divergence of SbNHX/NHE transporter genes with tissue specific expressions in Sorghum under different abiotic stress conditions.

5.
Alcohol Drug Res ; 7(4): 301-7, 1987.
Article in English | MEDLINE | ID: mdl-3828007

ABSTRACT

Because male Syrian hamsters demonstrate greater preference for ethanol than female hamsters, we compared them with regard to ethanol sensitivity and hepatic alcohol and aldehyde dehydrogenase activities. Male hamsters were slower to recover righting response and had lower blood alcohol levels upon recovery than did females. Hepatic alcohol dehydrogenase activity was approximately twice as high in females as males, but gender differences were not found for either cytosolic or non-cytosolic aldehyde dehydrogenase activities. The results suggest that the reduced ethanol sensitivity of female hamsters is due to more rapid metabolism. However, the finding that female hamsters have higher blood alcohol concentrations upon recovery also suggests the possibility of reduced CNS sensitivity.


Subject(s)
Alcohol Dehydrogenase/metabolism , Aldehyde Dehydrogenase/metabolism , Cricetinae/physiology , Ethanol/pharmacology , Mesocricetus/physiology , Animals , Ethanol/blood , Female , Liver/enzymology , Male , Sex Factors , Wakefulness/drug effects
6.
Am J Hum Genet ; 37(5): 898-911, 1985 Sep.
Article in English | MEDLINE | ID: mdl-3863481

ABSTRACT

Twenty-seven independent polymorphic loci were detected by two-dimensional electrophoresis (2DE) of serum, erythrocytes, and fibroblasts in two large families and analyzed for linkage to classical genetic markers. We detected seven serum, four erythrocyte, and 17 fibroblast protein loci that exhibited charge variation in these two families and in a sample of unrelated individuals. The genetic basis of protein variants was confirmed by quantitative gene-dosage dependence and by conformance to Mendelian transmission in the two families, except for four rare variants for which transmission analysis was not possible. Linkage analysis demonstrated that each of the variants represent products of independent loci, with the exception of erythrocyte locus (RBC4), which we also detected in fibroblasts (NC27). Two allozyme polymorphisms, glyoxalase-1 (GLO1) and phosphoglucomutase-3 (PGM3) were specifically identified here based on genotypic concordance and molecular mass. Unknown fibroblast protein (NC22) may be linked to apolipoprotein E (lod score = 2.8 at theta m = theta f = 0), while a serum protein locus (SER1) may be linked to alpha-haptoglobin (lod score = 2.54 at theta m = .20, theta f = .01). Six of seven polymorphic serum loci were previously located on two-dimensional gels: alpha-1 antitrypsin (PI), Gc-globulin (GC), alpha-2 HS glycoprotein (HSGA), alpha-haptoglobin (HP), and two apolipoproteins (APOE and APOA4). Six of 17 polymorphisms detected in fibroblasts were positionally identical to polymorphic loci seen in lymphocytes. These studies indicate a minimum level of average protein charge heterozygosity of approximately 2.2% for the most predominant human cellular proteins and of 5.6% for the most predominant proteins of serum.


Subject(s)
Blood Proteins/genetics , Genetic Markers , Polymorphism, Genetic , Proteins/genetics , Alleles , Blood Protein Electrophoresis , Electrophoresis, Polyacrylamide Gel , Erythrocytes/enzymology , Erythrocytes/metabolism , Fibroblasts/enzymology , Fibroblasts/metabolism , Genetic Linkage , Heterozygote , Humans , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...