Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Clin Microbiol ; 58(10)2020 09 22.
Article in English | MEDLINE | ID: mdl-32719032

ABSTRACT

Mycobacterium tuberculosis is the leading cause of death from bacterial infection. Improved rapid diagnosis and antimicrobial resistance determination, such as by whole-genome sequencing, are required. Our aim was to develop a simple, low-cost method of preparing DNA for sequencing direct from M. tuberculosis-positive clinical samples (without culture). Simultaneous sputum liquefaction, bacteria heat inactivation (99°C/30 min), and enrichment for mycobacteria DNA were achieved using an equal volume of thermo-protection buffer (4 M KCl, 0.05 M HEPES buffer, pH 7.5, 0.1% dithiothreitol [DTT]). The buffer emulated intracellular conditions found in hyperthermophiles, thus protecting DNA from rapid thermodegradation, which renders it a poor template for sequencing. Initial validation experiments employed mycobacteria DNA, either extracted or intracellular. Next, mock clinical samples (infection-negative human sputum spiked with 0 to 105Mycobacterium bovis BCG cells/ml) underwent liquefaction in thermo-protection buffer and heat inactivation. DNA was extracted and sequenced. Human DNA degraded faster than mycobacteria DNA, resulting in target enrichment. Four replicate experiments achieved M. tuberculosis detection at 101 BCG cells/ml, with 31 to 59 M. tuberculosis complex reads. Maximal genome coverage (>97% at 5× depth) occurred at 104 BCG cells/ml; >91% coverage (1× depth) occurred at 103 BCG cells/ml. Final validation employed M. tuberculosis-positive clinical samples (n = 20), revealing that initial sample volumes of ≥1 ml typically yielded higher mean depths of M. tuberculosis genome coverage, with an overall range of 0.55 to 81.02. A mean depth of 3 gave >96% 1-fold tuberculosis (TB) genome coverage (in 15/20 clinical samples). A mean depth of 15 achieved >99% 5-fold genome coverage (in 9/20 clinical samples). In summary, direct-from-sample sequencing of M. tuberculosis genomes was facilitated by a low-cost thermo-protection buffer.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium bovis/genetics , Mycobacterium tuberculosis/genetics , Sputum , Tuberculosis/diagnosis , Whole Genome Sequencing
3.
Microbiology (Reading) ; 164(12): 1522-1530, 2018 12.
Article in English | MEDLINE | ID: mdl-30351270

ABSTRACT

M. tuberculosis grows slowly and is challenging to work with experimentally compared with many other bacteria. Although microtitre plates have the potential to enable high-throughput phenotypic testing of M. tuberculosis, they can be difficult to read and interpret. Here we present a software package, the Automated Mycobacterial Growth Detection Algorithm (AMyGDA), that measures how much M. tuberculosis is growing in each well of a 96-well microtitre plate. The plate used here has serial dilutions of 14 anti-tuberculosis drugs, thereby permitting the MICs to be elucidated. The three participating laboratories each inoculated 38 96-well plates with 15 known M. tuberculosis strains (including the standard H37Rv reference strain) and, after 2 weeks' incubation, measured the MICs for all 14 drugs on each plate and took a photograph. By analysing the images, we demonstrate that AMyGDA is reproducible, and that the MICs measured are comparable to those measured by a laboratory scientist. The AMyGDA software will be used by the Comprehensive Resistance Prediction for Tuberculosis: an International Consortium (CRyPTIC) to measure the drug susceptibility profile of a large number (>30000) of samples of M. tuberculosis from patients over the next few years.


Subject(s)
Antitubercular Agents/pharmacology , Microbial Sensitivity Tests/instrumentation , Microbial Sensitivity Tests/methods , Mycobacterium tuberculosis/drug effects , Automation, Laboratory , Diagnostic Tests, Routine , Drug Resistance, Bacterial , Image Processing, Computer-Assisted , Mycobacterium tuberculosis/growth & development , Reproducibility of Results , Software
4.
J Clin Microbiol ; 56(11)2018 11.
Article in English | MEDLINE | ID: mdl-30209183

ABSTRACT

The detection of laboratory cross-contamination and mixed tuberculosis infections is an important goal of clinical mycobacteriology laboratories. The objective of this study was to develop a method to detect mixtures of different Mycobacterium tuberculosis lineages in laboratories performing mycobacterial next-generation sequencing (NGS). The setting was the Public Health England National Mycobacteriology Laboratory Birmingham, which performs Illumina sequencing on DNA extracted from positive mycobacterial growth indicator tubes. We analyzed 4,156 samples yielding M. tuberculosis from 663 MiSeq runs, which were obtained during development and production use of a diagnostic process using NGS. The counts of the most common (major) variant and all other variants (nonmajor variants) were determined from reads mapping to positions defining M. tuberculosis lineages. Expected variation was estimated during process development. For each sample, we determined the nonmajor variant proportions at 55 sets of lineage-defining positions. The nonmajor variant proportion in the two most mixed lineage-defining sets (F2 metric) was compared with that of the 47 least-mixed lineage-defining sets (F47 metric). The following three patterns were observed: (i) not mixed by either metric; (ii) high F47 metric, suggesting mixtures of multiple lineages; and (iii) samples compatible with mixtures of two lineages, detected by differential F2 metric elevations relative to F47. Pattern ii was observed in batches, with similar patterns in the M. tuberculosis H37Rv control present in each run, and is likely to reflect cross-contamination. During production, the proportions of samples in the patterns were 97%, 2.8%, and 0.001%, respectively. The F2 and F47 metrics described could be used for laboratory process control in laboratories sequencing M. tuberculosis genomes.


Subject(s)
Bacteriological Techniques/standards , Coinfection/diagnosis , Diagnostic Tests, Routine/standards , Mycobacterium tuberculosis/isolation & purification , Tuberculosis/diagnosis , Coinfection/microbiology , DNA, Bacterial/genetics , Genetic Variation , High-Throughput Nucleotide Sequencing/standards , Humans , Mycobacterium tuberculosis/genetics , Quality Control , Sequence Analysis, DNA/standards , Tuberculosis/microbiology
5.
EBioMedicine ; 34: 122-130, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30077721

ABSTRACT

BACKGROUND: Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeat (MIRU-VNTR) typing is widely used in high-income countries to determine Mycobacterium tuberculosis relatedness. Whole-genome sequencing (WGS) is known to deliver greater specificity, but no quantitative prospective comparison has yet been undertaken. METHODS: We studied isolates from the English Midlands, sampled consecutively between 1 January 2012 and 31 December 2015. In addition to routinely performed MIRU-VNTR typing, DNA was extracted from liquid cultures and sequenced using Illumina technology. Demographic and epidemiological data for the relevant patients were extracted from the Enhanced Tuberculosis Surveillance system run by Public Health England. Closely related samples, defined using a threshold of five single nucleotide variants (SNVs), were compared to samples with identical MIRU-VNTR profiles, to samples from individuals with shared epidemiological risk factors, and to those with both characteristics. FINDINGS: 1999 patients were identified for whom at least one M. tuberculosis isolate had been MIRU-VNTR typed and sequenced. Comparing epidemiological risk factors with close genetic relatedness, only co-residence had a positive predictive value of over 5%. Excluding co-resident individuals, 18.6% of patients with identical MIRU-VNTR profiles were within 5 SNVs. Where patients also shared social risk factors and ethnic group, this rose to 48%. Only 8% of MIRU-VNTR linked pairs in lineage 1 were within 5 SNV, compared to 31% in lineage 4. INTERPRETATION: In the setting studied, this molecular epidemiological study shows MIRU-VNTR typing and epidemiological risk factors are poorly predictive of close genomic relatedness, assessed by SNV. MIRU-VNTR performance varies markedly by lineage. FUNDING: Public Health England, Health Innovation Challenge Fund, NIHR Health Protection Research Unit Oxford, NIHR Oxford Biomedical Research Centre.


Subject(s)
Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology , Tuberculosis/transmission , Adolescent , Adult , Bacterial Typing Techniques , Female , Humans , Interspersed Repetitive Sequences , Male , Minisatellite Repeats , Prospective Studies , Whole Genome Sequencing , Young Adult
6.
J Clin Microbiol ; 56(2)2018 02.
Article in English | MEDLINE | ID: mdl-29167290

ABSTRACT

Use of whole-genome sequencing (WGS) for routine mycobacterial species identification and drug susceptibility testing (DST) is becoming a reality. We compared the performances of WGS and standard laboratory workflows prospectively, by parallel processing at a major mycobacterial reference service over the course of 1 year, for species identification, first-line Mycobacterium tuberculosis resistance prediction, and turnaround time. Among 2,039 isolates with line probe assay results for species identification, 74 (3.6%) failed sequencing or WGS species identification. Excluding these isolates, clinically important species were identified for 1,902 isolates, of which 1,825 (96.0%) were identified as the same species by WGS and the line probe assay. A total of 2,157 line probe test results for detection of resistance to the first-line drugs isoniazid and rifampin were available for 728 M. tuberculosis complex isolates. Excluding 216 (10.0%) cases where there were insufficient sequencing data for WGS to make a prediction, overall concordance was 99.3% (95% confidence interval [CI], 98.9 to 99.6%), sensitivity was 97.6% (91.7 to 99.7%), and specificity was 99.5% (99.0 to 99.7%). A total of 2,982 phenotypic DST results were available for 777 M. tuberculosis complex isolates. Of these, 356 (11.9%) had no WGS comparator due to insufficient sequencing data, and in 154 (5.2%) cases the WGS prediction was indeterminate due to discovery of novel, previously uncharacterized mutations. Excluding these data, overall concordance was 99.2% (98.7 to 99.5%), sensitivity was 94.2% (88.4 to 97.6%), and specificity was 99.4% (99.0 to 99.7%). Median processing times for the routine laboratory tests versus WGS were similar overall, i.e., 20 days (interquartile range [IQR], 15 to 31 days) and 21 days (15 to 29 days), respectively (P = 0.41). In conclusion, WGS predicts species and drug susceptibility with great accuracy, but work is needed to increase the proportion of predictions made.


Subject(s)
Drug Resistance, Bacterial/genetics , Genome, Bacterial/genetics , Molecular Typing/methods , Mycobacterium tuberculosis/isolation & purification , Tuberculosis/microbiology , Antitubercular Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Humans , Isoniazid/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Prospective Studies , Rifampin/pharmacology , Sensitivity and Specificity , Time Factors , Tuberculosis/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...