Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
2.
Neurosciences (Riyadh) ; 20(4): 385-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26492121

ABSTRACT

The Dyke-Davidoff-Masson Syndrome (DDMS) results from an insult to the growing brain in utero or early infancy, which lead to loss of neurons compromising the growth of the brain. Clinical presentation includes seizures, hemiparesis, facial asymmetry, and learning disability. Radiological findings include cerebral atrophy on one side. Here, we present a case with status epilepticus who had underlying DDMS. It is a rare syndrome and uncommon cause for status epilepticus. Infections of CNS, hypoxic ischemic encephalopathy, intracranial bleed, trauma, congenital vascular malformations are the common causes of this syndrome. Diagnosis is established after clinical history, examination, and MRI. Intractable seizures can be controlled with appropriate anticonvulsants. Subsequently, these children may require physiotherapy, speech therapy, and occupational therapy in addition to the anticonvulsant medication. Outcome is better if the seizures are controlled.


Subject(s)
Brain Diseases/congenital , Brain Diseases/complications , Status Epilepticus/etiology , Brain Diseases/physiopathology , Child, Preschool , Humans , Male , Syndrome
3.
Obesity (Silver Spring) ; 23(8): 1687-95, 2015 08.
Article in English | MEDLINE | ID: mdl-26179253

ABSTRACT

OBJECTIVE: Single gene mutations leading to severe obesity have so far been identified in 3-5% cases in European populations. However, prevalence of these pathogenic mutations has not systematically been examined in specific consanguineous populations. Here we describe the incidence of obesity-associated mutations through a step-wise sequence analysis, in a cohort of 73 Pakistani children with severe obesity from consanguineous families. METHODS: Initially, all subjects were screened for mutations in coding regions of leptin (LEP) and melanocortin 4 receptor (MC4R) genes by direct sequencing. Subjects negative for mutation in these genes were screened using microdroplet PCR enrichment and NGS. Genomic structural variation was assessed by genotyping. Serum leptin, insulin, and cortisol were determined by ELISA. RESULTS: Among 73 children with severe obesity (BMI SDS > 3.0), we identified 22 probands and 5 relatives, carrying 10 different loss-of-function homozygous mutations in LEP, leptin receptor (LEPR), and MC4R genes, including 4 novel variants. Hypercortisolemia was significantly emphasized in LEP mutation carriers. CONCLUSIONS: The prevalence of pathogenic mutations in genes known to directly influence leptin-melanocortin signaling is 30% in our cohort. The results of this study emphasize the desirability of undertaking systematic and in-depth genetic analysis of cases with severe obesity in specific consanguineous populations.


Subject(s)
Consanguinity , Leptin/genetics , Obesity, Morbid/genetics , Receptor, Melanocortin, Type 4/genetics , Receptors, Leptin/genetics , Adolescent , Child , Child, Preschool , Female , Genetic Variation , Genotype , Humans , Infant , Infant, Newborn , Male , Mutation , Obesity/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...