Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 40(4): 1521-1533, 2022 03.
Article in English | MEDLINE | ID: mdl-33021148

ABSTRACT

Alzheimer's disease (AD) is a progressive neurological disorder affecting an estimated 10 million people worldwide. There is no cure for AD, and only a handful of drugs are known to provide some relief of the symptoms. The prescription drug donepezil has been widely used to treat to slow the progression and onset of the disease; however, the unpleasant side effects have paved the way to find alternative medicines. Many herbs are known to improve brain function, but evidence of medicinal plants that can treat AD is limited due to the lack of concrete rational evidences. Moreover, the traditional method of randomly screening plant extract against AD targets takes time and resources. In this study, a receptor-based in silico method has been implemented which serves to accelerate the process of identification of medicinal plants useful for treatment of AD. A database of natural compounds was compiled to identify hits against acetylcholinesterase (AChE). Receptor-based pharmacophore screening was performed, and selected hits were subjected to docking and molecular dynamics simulations. Molecular Mechanics/Generalized Born surface area (MM/GBSA) calculations were carried out to identify the best scoring hits further. In vitro assays were done for the plant extracts containing the top-scoring hits against AChE. Three plant extracts showed favorable inhibitory activity.Communicated by Ramaswamy H. Sarma.


Subject(s)
Alzheimer Disease , Plants, Medicinal , Acetylcholinesterase , Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Humans , Molecular Docking Simulation
2.
Pharmacol Rep ; 72(3): 705-718, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32200493

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a widespread dementia-related disease affecting mankind worldwide. A cholinergic hypothesis is considered the most effective target for treating mild to moderate AD. Present study aims to identify new scaffolds for inhibiting acetylcholinesterase activity. METHODS: To find Acetylcholinesterase (AChE) inhibitors, we computationally designed and chemically synthesized a series of cation-π inhibitors based on novel scaffolds that potentially block AChE. The cytotoxic effect of inhibitors were determined by MTT. AChE inhibition experiment was performed by Ellman and the Amplex red method in the SH-SY5Y cell line. Further, the experimental data on designed compounds corroborate with various computational studies that further elucidate the binding mode of interactions and binding affinity. RESULTS: The inhibitors were designed to promote dual binding and were incorporated with groups that may facilitate any of the cation- π, hydrophobic and hydrogen-bonding interactions with the conserved and hot-spot residues in the binding site. The inhibitors possessing pyridine-N-methylated pyridinium group and thereby involved in cation- π interactions are highly active relative to the marketed drug Donepezil as well as the designed analogs that lack the group. In vitro enzymatic Ellman assay and Amplex red assay on SH-SY5Y cell line estimated IC50 of the designed compounds in nM range with one having binding affinity higher than Donepezil. Compounds exhibit no significant toxicity up to µM range. CONCLUSIONS: Compounds possessing methylidenecyclohexanone scaffolds, with characteristic dual-binding and involving strong cation-π interactions, serves as new leads for AChE and opens a new direction for drug discovery efforts.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/pharmacology , Binding Sites , Cations , Cell Line, Tumor , Cell Survival/drug effects , Cholinesterase Inhibitors/chemistry , Donepezil/chemistry , Donepezil/pharmacology , Drug Design , Humans , Molecular Docking Simulation , Neuroblastoma , Oxazines , Structure-Activity Relationship
3.
Heliyon ; 6(2): e03378, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32083215

ABSTRACT

Kaempferol is a ubiquitous flavonoid, found in various plants having a wide range of known pharmacological activities, including antioxidant, antiinflammatory, anticancer, antiallergic, antidiabetic, neuroprotective, cardioprotective and antimicrobial activities. Nonetheless various evidence suggest that kaempferol is also able to interact with many unknown therapeutic targets modulating signalling pathways, thus providing an opportunity to explore the potential target space of kaempferol. In this study, we have employed various ligand-based approaches to identify the potential targets of kaempferol, followed by validations using modelling and docking studies. Molecular dynamics, free energy calculations, volume and residue contact map analyses were made to delineate the cause of drug-resistance among mutants. We have discovered dihydropteroate synthase (DHPS) as a novel potential therapeutic target for kaempferol. Further studies employing molecular dynamics simulations and binding free energies indicate that kaempferol has potential to inhibit even the sulfone-resistant DHPS mutants, which makes it a very attractive antibiotic agent. The identification of natural-product based kaempferol opens up the door for the design of antibiotics in a quick and high throughput fashion for identifying antibiotic leads.

4.
Chem Biol Drug Des ; 94(6): 2073-2083, 2019 12.
Article in English | MEDLINE | ID: mdl-31452340

ABSTRACT

PCSK9, a member of the proprotein convertase family, is a key negative regulator of hepatic low-density lipoprotein receptor (LDLR) concentrations in the blood plasma and is associated with the risk of coronary artery disease (CAD). Peptide inhibitors designed to block PCSK9-LDLR interactions could reduce the risk of CAD. We present a study of the interaction of a PCSK9 bound peptide and its design through modification by phosphorylation using molecular dynamics simulations. Extensive explicit solvent simulations of PCSK9 and its mutant (Asp374 â†’ Tyr374) with designed peptides provide insights into the mechanism of peptide binding at the protein interface. We establish that ß-augmentation is the key mechanism of peptide association with PCSK9. Position-specific phosphorylation of threonine residues is observed to have noticeable effect in modulating protein-peptide association. This study provides a handle to explore and improve the design of peptides bound to PCSK9 by incorporating knowledge-derived functional motifs into designing potent binders.


Subject(s)
Molecular Dynamics Simulation , Peptides/chemistry , Proprotein Convertase 9/metabolism , Receptors, LDL/metabolism , Amino Acid Sequence , Binding Sites , Humans , Mutagenesis, Site-Directed , Peptides/metabolism , Phosphorylation , Proprotein Convertase 9/chemistry , Proprotein Convertase 9/genetics , Protein Binding , Receptors, LDL/antagonists & inhibitors
5.
Chem Biol Drug Des ; 93(4): 438-446, 2019 04.
Article in English | MEDLINE | ID: mdl-30381914

ABSTRACT

Natural products have been the source of treatment for various human diseases from time immemorial. Interests in natural product-based scaffolds for the discovery of modern drugs have grown in recent years. However, research on exploring the traditional medicinal systems for modern therapeutics is severely limited due to our incomplete understanding of the therapeutic mechanism of action. One possible solution is to develop computational approaches, based on ligand- and structure-based screening tools, for fast and plausible target identification, leading to elucidation of the therapeutic mechanism. In the present work, we present two methods based on shape-based and pharmacophore search to predict targets of natural products and elucidate their mechanism, and to identify natural product-based leads. These methods were tested on an in-house developed database of medicinal plants that include information from a largely unexplored North-East region of India, known as one of the twelve mega biodiversity regions. However, depending on the choice of the lead molecules, any existing databases can be used for screening. MedPServer is an open access resource available at http://bif.uohyd.ac.in/medserver/.


Subject(s)
Biological Products/chemistry , Databases, Factual , User-Computer Interface , Biological Products/metabolism , Drug Discovery , Ligands , Medicine, Traditional , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism
6.
Biopolymers ; 80(5): 651-64, 2005.
Article in English | MEDLINE | ID: mdl-15648091

ABSTRACT

Conformations of three analogs of for-L-Met-L-Leu-L-Phe-OH (fMLP), which initiates inflammatory response by interaction with the formyl peptide receptor (FPR), have been investigated by the application of the X-ray crystallographic technique. The investigated analogs of fMLP peptides are as follows: for-L-Met-1-amino-1-cyclooctane-carbonyl(Ac8c)-L-Phe-OMe; for-L-Met-L-Leu-L-p-iodo-Phe-OH; and for-L-Met-di-n-propylglycyl(Dpg)-L-Phe-OMe. The peptide backbone in and is constrained at position of fMLP by the introduction of Calpha,alpha-disubstituted glycines. In peptide, Phe-OMe is substituted by p-iodo-Phe-OH. Crystal structures reveal an overall folded conformation adopted by and. The former is folded in the type II beta-turn, which is stabilized by an intramolecular 1<--4 (formyl) C==O...H--N (Phe) hydrogen bond, whereas the latter is folded in an open turn without any intramolecular hydrogen bond. On the other hand, peptide has an extended conformation, and two different molecules in a crystallographic asymmetric unit form an antiparallel beta-sheet-like structure. In and, residues Ac8c and Dpg adopt left-handed helical and fully extended (C5) conformations, respectively. The cyclooctane ring in Ac8c acquires a boat-chair conformation. Crystal packing of is characterized by the association of aliphatic-aromatic rings via a C--H...pi interaction. In the crystal of, contrary to the usual observations, peptides are interlinked via networks of head-to-tail hydrogen bond and pi...pi interactions, which are generally observed to be mutually exclusive. The structure-function mechanism of the ligand-receptor interaction is discussed.


Subject(s)
Chemotactic Factors/chemistry , N-Formylmethionine Leucyl-Phenylalanine , Receptors, Formyl Peptide/metabolism , N-Formylmethionine Leucyl-Phenylalanine/analogs & derivatives , N-Formylmethionine Leucyl-Phenylalanine/chemistry , N-Formylmethionine Leucyl-Phenylalanine/metabolism , Protein Conformation , Receptors, Formyl Peptide/immunology , Structure-Activity Relationship , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...