Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Biochem ; 441(2): 152-61, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23851339

ABSTRACT

Leukotriene A4 hydrolase (LTA4H) is a bifunctional zinc-dependent metalloprotease bearing both an epoxide hydrolase, producing the pro-inflammatory LTB4 leukotriene, and an aminopeptidase activity, whose physiological relevance has long been ignored. Distinct substrates are commonly used for each activity, although none is completely satisfactory; LTA4, substrate for the hydrolase activity, is unstable and inactivates the enzyme, whereas aminoacids ß-naphthylamide and para-nitroanilide, used as aminopeptidase substrates, are poor and nonselective. Based on the three-dimensional structure of LTA4H, we describe a new, specific, and high-affinity fluorigenic substrate, PL553 [L-(4-benzoyl)phenylalanyl-ß-naphthylamide], with both in vitro and in vivo applications. PL553 possesses a catalytic efficiency (k(cat)/K(m)) of 3.8±0.5×104 M⁻¹ s⁻¹ using human recombinant LTA4H and a limit of detection and quantification of less than 1 to 2 ng. The PL553 assay was validated by measuring the inhibitory potency of known LTA4H inhibitors and used to characterize new specific amino-phosphinic inhibitors. The LTA4H inhibition measured with PL553 in mouse tissues, after intravenous administration of inhibitors, was also correlated with a reduction in LTB4 levels. This authenticates the assay as the first allowing the easy measurement of endogenous LTA4H activity and in vitro specific screening of new LTA4H inhibitors.


Subject(s)
Enzyme Assays/methods , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Naphthalenes/metabolism , Peptides/metabolism , Animals , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/chemistry , Humans , Male , Mice , Molecular Docking Simulation , Naphthalenes/analysis , Peptides/analysis , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrometry, Fluorescence/methods , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...