Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Nat Prod Res ; 37(1): 107-112, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34180317

ABSTRACT

Through this study, we aimed to develop a new analytical method for identification and quantification of sugars and cyclitols isolated from different morphological parts of Raphanus sativus L (R. sativus). Accelerated solvent extraction with water was involved for targets extraction. Solid phase extraction was used for purification and preconcentration, while high performance liquid chromatography with evaporative light scattering detector (HPLC-ELSD) was used for chromatographic analyses. A short method of only 30 min for a single analysis was developed finally. The obtained results, allowed for quantification of eight targets, i.e., three cyclitols (D-pinitol, allo-inositol and scyllo-inositol) and five sugars (xylose, D-mannose, D-fructose, D-glucose and sucrose) that were determined simultaneously using a single analysis. The developed method can be applied in industry as a routine method for analysis of sugars and cyclitols from different sources.


Subject(s)
Cyclitols , Raphanus , Sugars , Cyclitols/analysis , Glucose/analysis , Fructose , Chromatography, High Pressure Liquid/methods
2.
Molecules ; 27(15)2022 Aug 07.
Article in English | MEDLINE | ID: mdl-35956972

ABSTRACT

Bladder cancer is one of most common types of cancer diagnosed in the genitourinary tract. Typical tests are costly and characterized by low sensitivity, which contributes to a growing interest in volatile biomarkers. Head space solid phase microextraction (SPME) was applied for the extraction of volatile organic compounds from urine samples, and gas chromatography time of flight mass spectrometry (GC×GC TOF MS) was used for the separation and detection of urinary volatiles. A cohort of 40 adult patients with bladder cancer and 57 healthy persons was recruited. Different VOC profiles were obtained for urine samples taken from each group. Twelvecompounds were found only in the samples from theBC group.The proposed candidate biomarkers are butyrolactone; 2-methoxyphenol; 3-methoxy-5-methylphenol; 1-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)-2-buten-1-one; nootkatone and 1-(2,6,6-trimethyl-1-cyclohexenyl)-2-buten-1-one.Since most of the studies published in the field are proving the potential of VOCs detected in urine samples for the screening and discrimination of patients with bladder cancer from healthy, but rarely presenting the identity of proposed biomarkers, our study represents a novel approach.


Subject(s)
Urinary Bladder Neoplasms , Volatile Organic Compounds , Adult , Biomarkers , Gas Chromatography-Mass Spectrometry/methods , Humans , Rare Diseases , Solid Phase Microextraction/methods , Urinary Bladder Neoplasms/diagnosis , Volatile Organic Compounds/analysis
3.
Molecules ; 26(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34946786

ABSTRACT

Saponins are an important group of secondary metabolites naturally occurring in plants with important properties like: antibacterial, antiviral and antifungal. Moreover, they are widely used in the cosmetic industry and household chemistry. The sapogenins are saponin hydrolyses products, frequently used to facilitate saponin detection. In the present study, an improved methodology for isolation and separation of five sapogenins extracted from nettle (Urtica dioica L.), white dead-nettle (Lamium album L.), common soapwort (Saponaria officinalis L.) and washnut (Sapindus mukorossi Gaertn.) was developed using ultra-high-performance liquid chromatography with an evaporative light-scattering detector (UHPLC-ELSD). Based on quantitative analysis, the highest content of hederagenin (999.1 ± 6.3 µg/g) and oleanolic acid (386.5 ± 27.7 µg/g) was found in washnut extracts. Good recoveries (71% ± 6 up to 99% ± 8) were achieved for four investigated targets, while just 22.2% ± 0.5 was obtained for the fifth one. Moreover, hederagenin and oleanolic acid of whose highest amount was detected in washnut (999.1 ± 6.3 µg/g and 386.5 ± 27.7 µg/g, respectively) were subject to another approach. Consequently, liquid chromatography coupled mass spectrometry (LC/MS) with multiple reaction monitoring mode (MRM) was used as an additional technique for fast and simultaneous identification of the mentioned targets.


Subject(s)
Sapindus/chemistry , Sapogenins/analysis , Sapogenins/isolation & purification , Saponaria/chemistry , Urtica dioica/chemistry
4.
Sci Rep ; 11(1): 18780, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34548581

ABSTRACT

VOCs (volatile organic compounds) are increasingly wished to be used in diagnosis of diseases. They present strategic advantages, when compared to classical methods used, such as simplicity and current availability of performant non-invasive sample collection methods/systems. However, standardized sampling methods are required in order to achieve reproducible results. In the current study we developed a method to be used for feces sampling using a Micro-Chamber/Thermal Extractor (µ-CTE). Design Expert software (with Box-Behnken design) was used to predict the solutions. Therefore, by using the simulation experimental plan that was further experimentally verified, extraction time of 19.6 min, at extraction temperature of 30.6 °C by using a flow rate of 48.7 mL/min provided the higher response. The developed method was validated by using correlation tests and Network analysis, which both proved the validity of the developed model.


Subject(s)
Feces/chemistry , Volatile Organic Compounds/analysis , Biomarkers/metabolism , Gas Chromatography-Mass Spectrometry/methods , Humans
5.
Sensors (Basel) ; 21(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34372282

ABSTRACT

Sensitive real-time detection of vapors produced by toxic industrial chemicals (TICs) always represents a stringent priority. Hydrogen cyanide (HCN) is definitely a TIC, being widely used in various industries and as an insecticide; it is a reactive, very flammable, and highly toxic compound that affects the central nervous system, cardiovascular system, eyes, nose, throat, and also has systemic effects. Moreover, HCN is considered a blood chemical warfare agent. This study was focused toward quick detection and quantification of HCN in air using time-of-flight ion mobility spectrometry (ToF IMS). Results obtained clearly indicate that IMS can rapidly detect HCN at sub-ppmv levels in air. Ion mobility spectrometric response was obtained in the negative ion mode and presented one single distinct product ion, at reduced ion mobility K0 of 2.38 cm2 V-1 s-1. Our study demonstrated that by using a miniaturized commercial IMS system with nonradioactive ionization source model LCD-3.2E (Smiths Detection Ltd., London, UK), one can easily measure HCN at concentrations of 0.1 ppmv (0.11 mg m-3) in negative ion mode, which is far below the OSHA PEL-TWA value of 10 ppmv. Measurement range was from 0.1 to 10 ppmv and the estimated limit of detection LoD was ca. 20 ppbv (0.02 mg m-3).


Subject(s)
Chemical Warfare Agents , Hydrogen Cyanide , Chemical Warfare Agents/analysis , Gases , Hydrogen Cyanide/analysis , Ion Mobility Spectrometry , London
6.
Molecules ; 26(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33804943

ABSTRACT

Volatile organic compounds (VOCs) exiting in urine are potential biomarkers of chronic kidney diseases. Headspace solid phase microextraction (HS-SPME) was applied for extraction VOCs over the urine samples. Volatile metabolites were separated and identified by means of two-dimensional gas chromatography and time of flight mass spectrometry (GC × GC TOF MS). Patients with glomerular diseases (n = 27) and healthy controls (n = 20) were recruited in the study. Different VOCs profiles were obtained from patients and control. Developed methodology offers the opportunity to examine the metabolic profile associated with glomerulopathy. Four compounds found in elevated amounts in the patients group, i.e., methyl hexadecanoate; 9-hexadecen-1-ol; 6,10-dimethyl-5,9-undecadien-2-one and 2-pentanone were proposed as markers of glomerular diseases.


Subject(s)
Gas Chromatography-Mass Spectrometry , Renal Insufficiency, Chronic/urine , Volatile Organic Compounds/urine , Biomarkers/urine , Female , Humans , Male , Middle Aged
7.
Molecules ; 26(6)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33810121

ABSTRACT

Volatile organic compounds (VOCs) have been assessed in breath samples as possible indicators of diseases. The present study aimed to quantify 29 VOCs (previously reported as potential biomarkers of lung diseases) in breath samples collected from controls and individuals with lung cancer, chronic obstructive pulmonary disease and asthma. Besides that, global VOC profiles were investigated. A needle trap device (NTD) was used as pre-concentration technique, associated to gas chromatography-mass spectrometry (GC-MS) analysis. Univariate and multivariate approaches were applied to assess VOC distributions according to the studied diseases. Limits of quantitation ranged from 0.003 to 6.21 ppbv and calculated relative standard deviations did not exceed 10%. At least 15 of the quantified targets presented themselves as discriminating features. A random forest (RF) method was performed in order to classify enrolled conditions according to VOCs' latent patterns, considering VOCs responses in global profiles. The developed model was based on 12 discriminating features and provided overall balanced accuracy of 85.7%. Ultimately, multinomial logistic regression (MLR) analysis was conducted using the concentration of the nine most discriminative targets (2-propanol, 3-methylpentane, (E)-ocimene, limonene, m-cymene, benzonitrile, undecane, terpineol, phenol) as input and provided an average overall accuracy of 95.5% for multiclass prediction.


Subject(s)
Adenocarcinoma of Lung/metabolism , Asthma/metabolism , Gas Chromatography-Mass Spectrometry , Lung Neoplasms/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Volatile Organic Compounds/metabolism , Adult , Breath Tests , Female , Humans , Male
8.
Crit Rev Anal Chem ; 51(2): 150-173, 2021.
Article in English | MEDLINE | ID: mdl-31820658

ABSTRACT

A chromatographic column is the fundamental element required for gas-chromatographic analysis. The separation of components coming from complex mixtures, prior to their detection was leading to a prominent revolution in different areas of science. Moreover, current advances in gas chromatographic (GC) columns technology and development have been providing almost unlimited possibilities for analysis employing diverse matrices. We aim through this review article to describe the evolution of chromatographic columns, by pointing the most important stages, as well as the new trends and future perspectives predicted for the new generation of GC columns. Furthermore, it was in our scope to present the main fundamentals regarding the theoretical relationships that describe the chromatographic separation, to introduce concepts related to columns selection in accordance with the required application as well as to discuss the available evaluation parameters for columns efficiency. Consequently, the early stages of first columns preparation up to the development of GC capillary columns used nowadays, together with examples of their applications are also reported and described in detail.


Subject(s)
Chromatography, Gas/methods , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Humans , Neoplasms/diagnosis , Polymers/chemistry , Porosity , Siloxanes/chemistry , Volatile Organic Compounds/analysis
9.
Toxics ; 8(4)2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33327618

ABSTRACT

Sensitive real-time detection of vapors produced by toxic industrial chemicals (TICs) represents a stringent priority nowadays. Carbon disulfide (CS2) is such a chemical, being widely used in manufacturing synthetic textile fibers and as a solvent. CS2 is simultaneously a very reactive, highly flammable, irritant, corrosive, and highly toxic compound, affecting the central nervous system, cardiovascular system, eyes, kidneys, liver, skin, and reproductive system. This study was directed towards quick detection and quantification of CS2 in air, using time-of-flight ion mobility spectrometry (IMS); photoionization detection (PID) was also used as confirmatory technique. Results obtained indicated that IMS can detect CS2 at trace levels in air. The ion mobility spectrometric response was in the negative ion mode and presented one product ion, at a reduced ion mobility (K0) of 2.25 cm2 V-1 s-1. Our study demonstrated that by using a portable, commercial IMS system (model Mini IMS, I.U.T. GmbH Berlin Germany) one can easily measure CS2 at concentrations of 0.1 ppmv (0.3 mg m-3) in the negative ion mode, which is below the lowest threshold value of 1 ppmv given for industrial hygiene. A limit of detection (LOD) of ca. 30 ppbv (0.1 mg m-3) was also estimated.

10.
Molecules ; 25(24)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33317195

ABSTRACT

A method development for determination of neonicotinoid residues in honey samples was developed. The proposed methodology consisted in QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe). That was used for sample preparation and UHPLC/UV (ultra-performance liquid chromatography with ultraviolet detection) utilized for chromatographic analysis. The developed method proved to be sensitive, with LOD (Limit of detection) value in the range of 60.80 to 80.98 ng/g hence LOQ (Limit of quantification) value was in the range of 184.26 to 245.40 ng/g. The method has tested on Polish honey and applied to honey from various countries (Bulgaria, Czech Republic, France, Greece, Italy, Portugal, Romania, Australia, Brazil, Cameroon, Russia, USA and Turkey). Several honey types were tested, while physicochemical properties of all honeys and were investigated. The methodology for general characterization of pollen grains originated from selected plants, to confirm the type of honey was also presented. There was a total lack of the mentioned neonicotinoids in sunflower honey. Except of this, only two samples of rapeseed and two samples of acacia honey (from Poland and Romania) were neonicotinoids free. In 19 samples the targeted pesticides were detected above LOQ. In all other investigated samples, the neonicotinoids were found at least at the LOD or LOQ level.


Subject(s)
Honey/analysis , Neonicotinoids/analysis , Animals , Australia , Bees , Brazil , Chemical Phenomena , Chromatography, High Pressure Liquid , Europe , Flowers/chemistry , Insecticides/analysis , Insecticides/chemistry , Limit of Detection , Neonicotinoids/chemistry , Poland , Pollen/chemistry , Pollen/ultrastructure , Pollination , United States
11.
J Clin Med ; 10(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374433

ABSTRACT

Lung cancer, chronic obstructive pulmonary disease (COPD) and asthma are inflammatory diseases that have risen worldwide, posing a major public health issue, encompassing not only physical and psychological morbidity and mortality, but also incurring significant societal costs. The leading cause of death worldwide by cancer is that of the lung, which, in large part, is a result of the disease often not being detected until a late stage. Although COPD and asthma are conditions with considerably lower mortality, they are extremely distressful to people and involve high healthcare overheads. Moreover, for these diseases, diagnostic methods are not only costly but are also invasive, thereby adding to people's stress. It has been appreciated for many decades that the analysis of trace volatile organic compounds (VOCs) in exhaled breath could potentially provide cheaper, rapid, and non-invasive screening procedures to diagnose and monitor the above diseases of the lung. However, after decades of research associated with breath biomarker discovery, no breath VOC tests are clinically available. Reasons for this include the little consensus as to which breath volatiles (or pattern of volatiles) can be used to discriminate people with lung diseases, and our limited understanding of the biological origin of the identified VOCs. Lung disease diagnosis using breath VOCs is challenging. Nevertheless, the numerous studies of breath volatiles and lung disease provide guidance as to what volatiles need further investigation for use in differential diagnosis, highlight the urgent need for non-invasive clinical breath tests, illustrate the way forward for future studies, and provide significant guidance to achieve the goal of developing non-invasive diagnostic tests for lung disease. This review provides an overview of these issues from evaluating key studies that have been undertaken in the years 2010-2019, in order to present objective and comprehensive updated information that presents the progress that has been made in this field. The potential of this approach is highlighted, while strengths, weaknesses, opportunities, and threats are discussed. This review will be of interest to chemists, biologists, medical doctors and researchers involved in the development of analytical instruments for breath diagnosis.

12.
Molecules ; 25(8)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316669

ABSTRACT

Sensitive real-time detection of vapors produced by the precursors, reagents and solvents used in the illegal drugs manufacture represents a priority nowadays. Acetic anhydride (AA) is the key chemical used as acetylation agent in producing the illegal drugs heroin and methaqualone. This study was directed towards quick detection and quantification of AA in air, using two fast and very sensitive analytical techniques: photoionization detection (PID) and ion mobility spectrometry (IMS). Results obtained indicated that both PID and IMS can sense AA at ultra-trace levels in air, but while PID produces a non-selective response, IMS offers richer information. Ion mobility spectrometric response in the positive ion mode presented one product ion, at reduced ion mobility K0 of 1.89 cm2 V-1 s-1 (almost overlapped with positive reactant ion peak), while in the negative ion mode two well separated product ions, with K0 of 1.90 and 1.71 cm2 V-1 s-1, were noticed. Our study showed that by using a portable, commercial IMS system (model Mini IMS, I.U.T. GmbH Berlin) AA can be easily measured at concentrations of 0.05 ppmv (0.2 mg m-3) in negative ion mode. Best selectivity and sensitivity of the IMS response were therefore achieved in the negative operation mode.


Subject(s)
Acetic Anhydrides/analysis , Biosensing Techniques , Illicit Drugs/analysis , Illicit Drugs/chemistry , Ion Mobility Spectrometry , Trace Elements/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Biosensing Techniques/standards , Ion Mobility Spectrometry/instrumentation , Ion Mobility Spectrometry/methods , Ion Mobility Spectrometry/standards , Reproducibility of Results
13.
PLoS One ; 15(1): e0227352, 2020.
Article in English | MEDLINE | ID: mdl-31945077

ABSTRACT

The article presents the radiocarbon investigation of the baobab of Jhunsi, Allahabad and the Parijaat tree at Kintoor, two old African baobabs from northern India. Several wood samples extracted from these baobabs were analysed by using AMS radiocarbon dating. The radiocarbon date of the oldest samples were 779 ± 41 BP for the baobab of Jhunsi and 793 ± 37 BP for the baobab of Kintoor. The corresponding calibrated ages are 770 ± 25 and 775 ± 25 calendar years. These values indicate that both trees are around 800 years old and become the oldest dated African baobabs outside Africa.


Subject(s)
Adansonia/growth & development , Radiometric Dating/methods , Trees/growth & development , Wood/analysis , India
14.
Crit Rev Anal Chem ; 50(6): 501-512, 2020.
Article in English | MEDLINE | ID: mdl-31514505

ABSTRACT

Simple tests using sniff analysis that have the ability of diagnosing and rapidly distinguishing between infections due to different bacteria are urgently required by medical community worldwide. Professionals interested in this topic wish for these tests to be simultaneously cheap, fast, easily applicable, non-invasive, robust, reliable, and sensitive. Current analytical instrumentation has already the ability for performing real time (minutes or a few dozens of minutes) analysis of volatile bacterial biomarkers (the VOCs emitted by bacteria). Although many articles are available, a review displaying an objective evaluation of the current status in the field is still needed. This review tries to present an overview regarding the bacterial biomarkers released from in vitro cultivation of various bacterial strains and also from different biological matrices investigated, over the last 10 years. We have described results of relevant studies, which used modern analytical techniques to evaluate specific biomarker profiles associated with bacterial infections. Our purpose was to present a comprehensive view of available possibilities for detection of emitted bacterial VOCs from different matrices. We intend that this review to be of general interest for both medical doctors and for all researchers preoccupied with bacterial infectious diseases and their rapid diagnosis using analytical instrumentation.


Subject(s)
Bacterial Infections/diagnosis , Volatile Organic Compounds/metabolism , Animals , Bacteria/metabolism , Bacterial Infections/urine , Biomarkers/metabolism , Biomarkers/urine , Feces/chemistry , Feces/microbiology , Humans , Volatile Organic Compounds/urine
15.
Talanta ; 206: 120233, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31514847

ABSTRACT

The possibility of achieving bacterial discrimination using a miniaturized aspiration ion mobility spectrometer model ChemPro-100i (Environics Oy) has been tested by interrogating the headspace air samples above in vitro bacterial cultures of three species - Escherichia coli, Bacillus subtilis and Staphylococcus aureus, respectively. The ChemPro-100i highly integrated seven sensor array, composed of one a-IMS cell, three MOS (metal oxide sensors), one FET (field effect transistor) sensor and two SC (semiconductor) sensors, provided enough analytical information to discriminate between the three bacterial species. Statistical data processing using either principal component analysis (PCA) or partial least squares discriminant analysis (PLS-DA) was accomplished. We concluded that although the data from the aspiration-type ion mobility sensor, with its 16 ion detectors, is absolutely sufficient to discriminate between various bacteria using their volatile compounds' chemical profile, the other six sensors deliver additional, valuable information.


Subject(s)
Bacillus subtilis/isolation & purification , Bacterial Typing Techniques/methods , Escherichia coli/isolation & purification , Ion Mobility Spectrometry/methods , Staphylococcus aureus/isolation & purification , Discriminant Analysis , Least-Squares Analysis , Principal Component Analysis , Volatile Organic Compounds/analysis
16.
Molecules ; 25(1)2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31861887

ABSTRACT

Honey is a natural sweetener, with an osmotic effect on microorganisms due to the increased sugar content and low amount of water. Cyclitols are minor constituents of honey. They play a defensive role in plants against unfavorable environmental conditions. Honey's physicochemical properties can vary, resulting in a wide range of colors, flavors, scents, antioxidant activity, dissimilar values of pH, acidity, electrical conductivity, etc. Some literature regarding correlation between honey types is already available, but a comprehensive study displaying an ample evaluation of multifarious aspects is still needed. This study focuses on the correlation between 18 honey types, originating from 10 countries, collected during four years, summarizing a total of 38 samples. A total of 6 physicochemical properties and 18 target components (sugars and cyclitols) were considered as variables. A correlation analysis is presented between the investigated parameters and between honey types, together with the statistical analysis which allowed for observation of the clusters' distribution according with the investigated variables.


Subject(s)
Cyclitols/analysis , Honey/analysis , Sugars/analysis
17.
Anal Biochem ; 585: 113407, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31449777

ABSTRACT

Escherichia coli (E. coli) is a Gram-negative bacterium commonly found in the lower intestine of warm-blooded organisms, including humans. Although the majority of the strains are considerably harmless, some serotypes are pathogenic, frequently causing diarrhea and other illnesses outside the intestinal tract. The standard antidote against bacteria is the use of antibiotics. Depending on their type, the antibiotics have various mechanisms of action on bacteria. Moreover, in case of in-vitro cultivation of bacteria, the used growth media plays a crucial role, since it influences bacterial inhibition as well. In the present study, we emphasize the importance of cultivability in bacterial inhibition under the treatment with five different antibiotics belonging to different classes. Consequently, E. coli was cultivated in three different growth media: trypcase soy broth (TSB), Mueller Hinton (MH), and minimal salts (M9) enriched with glucose, respectively. MALDI-TOF MS (matrix-assisted laser desorption ionization time-of-flight mass spectrometry) analyses, that were used for fast characterization of changes that occur in ribosomal protein profiles, revealed differentiation and similarities between investigated cases, while flow cytometry (FCM) tests better explained the given changes that occurred in the analyzed samples after 3, 24 and 48 h of experimental campaign.


Subject(s)
Anti-Bacterial Agents/metabolism , Culture Media/chemistry , Culture Media/metabolism , Escherichia coli/drug effects , Escherichia coli/growth & development , Bacterial Proteins/analysis , Flow Cytometry , Glucose/chemistry , Ribosomal Proteins/analysis , Ribosomal Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Time Factors
18.
J Sep Sci ; 42(20): 3243-3252, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31444853

ABSTRACT

The aim of the present study was to develop an optimization procedure for supercritical fluid extraction parameters, in order to obtain the highest possible yield of sugars and cyclitols from plant material. Response surface methodology based on Box-Behnken design was applied to evaluate the effect of: temperature (40, 60, 80°C), pressure (100, 200, 300 bar), and co-solvent (methanol) percentage (20, 25, 30%). As a result of the optimization process, we found that the highest amount of sugars (15.02 mg/gof dried material) and cyclitols (0.86 mg/g of dried material) was obtained when the following parameters were applied: 80°C, 228 bar, and 30% of methanol. Moreover, co-solvent concentration and temperature had a higher influence onto the obtained amounts compared with the pressure.

19.
Molecules ; 24(16)2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31426356

ABSTRACT

Halitosis and submandibular abscesses are examples of mouth-related diseases with the possible bacterial origin. Salivary volatile organic compounds (VOCs) are potential biomarkers of them, once they can be addressed as metabolites of bacterial activity. Healthy patients (n = 15), subjects with submandibular abscesses located in fascial deep space (n = 10), and subjects with halitosis (n = 5) were enrolled in the study. Saliva samples were subjected to headspace solid-phase microextraction (HS-SPME) and gas chromatography coupled to mass spectrometry (GC/MS) analysis. A total number of 164 VOCs was detected by the developed methodology, 23 specific for halitosis and 41 for abscess. Halitosis' profiles were characterized by a larger number of sulfur compounds, while for abscess they had a higher variety of alcohols, aldehydes, and hydrocarbons-biomarkers of inflammatory processes. Principal components analysis allowed visualization of clusters formed according to the evaluated conditions. Kruskal-Wallis test indicated that 39 VOCs presented differentiated responses between the studied groups, with statistical relevance (p < 0.05). Random forest was applied, and a prediction model based on eight VOCs (2-butanone, methyl thioacetate, 2-methylbutanoic acid, S-methyl pentanethioate, dimethyl tetrasulfide, indolizine, pentadecane, and octadecanal) provided 100% of sensitivity, 82% of specificity, and 91% of balanced accuracy, indicating the specific presence of submandibular abscess.


Subject(s)
Abscess/diagnosis , Alcohols/isolation & purification , Aldehydes/isolation & purification , Halitosis/diagnosis , Hydrocarbons/isolation & purification , Sulfur Compounds/isolation & purification , Abscess/metabolism , Abscess/pathology , Adult , Aged , Alcohols/classification , Aldehydes/classification , Biomarkers/analysis , Case-Control Studies , Dentate Gyrus/metabolism , Dentate Gyrus/pathology , Diagnosis, Differential , Female , Gas Chromatography-Mass Spectrometry , Halitosis/metabolism , Halitosis/pathology , Humans , Hydrocarbons/classification , Male , Mandible/metabolism , Mandible/pathology , Middle Aged , Principal Component Analysis , Saliva/chemistry , Sensitivity and Specificity , Solid Phase Microextraction/methods , Sulfur Compounds/classification , Volatile Organic Compounds
20.
Anal Biochem ; 578: 36-44, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31085164

ABSTRACT

Considering the shortcomings related to antibiotics usage, the introduction of other bacteriostatic and bactericidal agents that present synergetic effects or standalone properties is urgently needed. AgNO3 is an important bactericidal agent, which imparts various functions on bacteria dependent on its concentration. Therefore, an understanding of its mechanisms of action in infinitesimal concentrations plays an important role which can ultimately lead to AgNO3 involvement in the pharmaceutical industry. The monitoring of VOC (volatile organic compound) profiles emitted by bacteria is a simple method to assess changes occurring in bacterial metabolism. In this study, VOCs of Hafnia alvei, Pseudomonas luteola and Staphylococcus warneri cultures were analyzed both in the absence and in the presence of three concentrations of AgNO3. Headspace solid-phase microextraction gas chromatography/mass spectrometry (HS-SPME-GC/MS) was employed for extraction and analysis. After supplementation with AgNO3, changes in the emitted fingerprints were investigated. Odorants associated with mouth-related and systemic diseases, like dimethyl trisulfide, indole (halitosis) and 2-hexanone (celiac disease), were also affected by addition of AgNO3. Statistical tests proved discrimination between obtained profiles with more that 90% variability. Moreover, physiological states of bacteria after dosage with various concentration of stressing agent were investigated and explained by the mechanisms of action.


Subject(s)
Hafnia alvei/drug effects , Pseudomonas/drug effects , Saliva/microbiology , Silver Nitrate/pharmacology , Staphylococcus/drug effects , Volatile Organic Compounds/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...