Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(40): 37013-37025, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31513381

ABSTRACT

In recent times, high-temperature polymer electrolyte membranes (HTPEMs) have emerged as viable alternatives to the Nafion-based low-temperature-operated polymer electrolyte membrane fuel cells. This is owing to their higher tolerance to fuel impurities, efficient water management, and higher cathode kinetics. However, the most efficacious HTPEMs such as poly(benzimidazole) (PBI) or 2,5-poly(benzimidazole) (ABPBI), which rely on the extent of phosphoric acid (PA) doping level for fuel cell performance, suffer from poor mechanical properties at higher acid doping levels and dopant leaching during continuous operation. To overcome these issues, we report the synthesis of ABPBI membranes and fabrication of ABPBI-zirconium pyrophosphate (α-ZrP)-based nanocomposite membranes by an ex situ methodology using methane sulfonic acid as the solvent. The incorporation of hydrophilic α-ZrP into the membrane resulted in higher dopability of PA (6.5 mol) and proton conductivity (46 mS/cm) of the membranes (10 wt % of α-ZrP) as against the corresponding values of 3.6 mol and 27 mS/cm, respectively, for the pristine membrane. More remarkably, these property improvements could be achieved while simultaneously augmenting the thermomechanical properties and oxidative stability of the membranes. The unit-cell tests showed a marked improvement in the maximum power density for the nanocomposite membrane (335 mW/cm2 at 10 wt % α-ZrP content) over the pristine ABPBI membrane (200 mW/cm2). We also report for the first time the feasibility of a 100 W HTPEM fuel cell (HTPEMFC) stack operated with the nanocomposite membrane with an active area of 39 cm2. The HTPEMFC stack delivered a stable voltage and power output, with a voltage drop rate of 0.84 µV/h over a run time of 730 h.

2.
Inhal Toxicol ; 22(9): 778-84, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20513212

ABSTRACT

Comparative inhalation toxicity studies of pyrolytic products (smoke) from synthetic polymer, fiberglass reinforced plastic (FRP) and teak wood shavings were carried out in male Swiss albino mice. The breathing pattern and the respiratory variables were monitored using a computer program that recognizes the modifications of the respiratory pattern. Exposure to the smoke from both the polymers caused a concentration dependent decrease in normal breathing and an increase in sensory irritation measure. The acute lethal concentration 50 values for a 15 min static inhalation exposure to the smoke from FRP and teak wood shavings were found to be > 200.00 and 62.99 g/m(3), respectively. Hence the inhalation toxicity of smoke from FRP sample on a mass basis is approximately one-third that of the smoke from teak wood. The concentration of smoke causing 50% respiratory depression of the exposed animals were found to be 6.877 and 0.106 g/m(3) for FRP and teak wood samples, respectively. Thus the sensory irritancy of the smoke from FRP sample is approximately 65 times lesser than the smoke from teak wood. The higher sensory irritancy potential of wood smoke as compared to FRP smoke may be caused by a greater number of submicron particles (size range of 2 micron and less) and greater percentage of gases present in wood smoke as compared to FRP smoke. Thus in case of accidental fires, synthetic polymers like FRP may be a safer choice for structural parts and interiors than the natural wood.


Subject(s)
Lung Diseases/chemically induced , Plastics/toxicity , Smoke Inhalation Injury/etiology , Smoke/adverse effects , Animals , Fires , Glass/chemistry , Hot Temperature , Inhalation Exposure , Longevity/drug effects , Lung Diseases/pathology , Lung Diseases/physiopathology , Male , Mice , Respiratory Function Tests , Smoke Inhalation Injury/pathology , Smoke Inhalation Injury/physiopathology , Toxicity Tests, Acute , Wood
SELECTION OF CITATIONS
SEARCH DETAIL
...