Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(10): 6817-6829, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38427023

ABSTRACT

N-Acetyl muramic acid (NAM) probes containing alkyne or azide groups are commonly used to investigate aspects of cell wall synthesis because of their small size and ability to incorporate into bacterial peptidoglycan (PG). However, copper-catalyzed alkyne-azide cycloaddition (CuAAC) reactions are not compatible with live cells, and strain-promoted alkyne-azide cycloaddition (SPAAC) reaction rates are modest and, therefore, not as desirable for tracking the temporal alterations of bacterial cell growth, remodeling, and division. Alternatively, the tetrazine-trans-cyclooctene ligation (Tz-TCO), which is the fastest known bioorthogonal reaction and not cytotoxic, allows for rapid live-cell labeling of PG at biologically relevant time scales and concentrations. Previous work to increase reaction kinetics on the PG surface by using tetrazine probes was limited because of low incorporation of the probe. Described here are new approaches to construct a minimalist tetrazine (Tz)-NAM probe utilizing recent advancements in asymmetric tetrazine synthesis. This minimalist Tz-NAM probe was successfully incorporated into pathogenic and commensal bacterial PG where fixed and rapid live-cell, no-wash labeling was successful in both free bacterial cultures and in coculture with human macrophages. Overall, this probe allows for expeditious labeling of bacterial PG, thereby making it an exceptional tool for monitoring PG biosynthesis for the development of new antibiotic screens. The versatility and selectivity of this probe will allow for real-time interrogation of the interactions of bacterial pathogens in a human host and will serve a broader utility for studying glycans in multiple complex biological systems.


Subject(s)
Heterocyclic Compounds , Peptidoglycan , Humans , Azides , Muramic Acids , Cycloaddition Reaction , Alkynes
2.
Microb Pathog ; 174: 105943, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36502992

ABSTRACT

Nontuberculous mycobacteria (NTM) such as Mycobacterium smegmatis accumulate high levels of glycopeptidolipids (GPLs) on their outer surface. The biosynthesis of GPLs is critically linked to biofilm formation by NTM which also includes opportunistic pathogens such as Mycobacterium abscessus. Although GPLs have been investigated in many earlier studies, the biosynthesis of GPLs using exogenous fatty acids in M. smegmatis subjected to stresses encountered by mycobacteria during infection of the human body has not been studied. Therefore, we subjected M. smegmatis to different combinations of the three stresses of hypoxia, acidic pH and nutrient starvation and report here that the metabolic incorporation of radiolabeled long-chain fatty acids into alkali-stable GPLs was significantly increased under these stress conditions. Endogenously synthesized fatty acids were not preferred for GPL biosynthesis by M. smegmatis subjected to the triple stress combination. Our observations indicate that GPLs may play important roles in cell surface modifications associated with the non-replicating state of M. smegmatis. Our experimental model reported here would be useful in the further study of GPL biosynthesis from exogenous fatty acid sources in M. smegmatis subjected to hypoxia, nutrient starvation and acidic stress conditions and help in the screening of candidate drugs that target this biochemical pathway in pathogenic NTM.


Subject(s)
Mycobacterium smegmatis , Mycobacterium , Humans , Mycobacterium smegmatis/metabolism , Fatty Acids/metabolism , Glycopeptides/metabolism , Nontuberculous Mycobacteria
SELECTION OF CITATIONS
SEARCH DETAIL
...