Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Rep ; 24(7): e56021, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37306233

ABSTRACT

MicroRNA (miRNA) biogenesis is tightly regulated to maintain distinct miRNA expression patterns. Almost half of mammalian miRNAs are generated from miRNA clusters, but this process is not well understood. We show here that Serine-arginine rich splicing factor 3 (SRSF3) controls the processing of miR-17-92 cluster miRNAs in pluripotent and cancer cells. SRSF3 binding to multiple CNNC motifs downstream of Drosha cleavage sites within miR-17-92 is required for the efficient processing of the cluster. SRSF3 depletion specifically compromises the processing of two paralog miRNAs, miR-17 and miR-20a. In addition to SRSF3 binding to the CNNC sites, the SRSF3 RS-domain is essential for miR-17-92 processing. SHAPE-MaP probing demonstrates that SRSF3 binding disrupts local and distant base pairing, resulting in global changes in miR-17-92 RNA structure. Our data suggest a model where SRSF3 binding, and potentially its RS-domain interactions, may facilitate an RNA structure that promotes miR-17-92 processing. SRSF3-mediated increase in miR-17/20a levels inhibits the cell cycle inhibitor p21, promoting self-renewal in normal and cancer cells. The SRSF3-miR-17-92-p21 pathway operates in colorectal cancer, linking SRSF3-mediated pri-miRNA processing and cancer pathogenesis.


Subject(s)
MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , RNA Processing, Post-Transcriptional , Mammals/genetics , Mammals/metabolism
2.
Blood ; 139(9): 1359-1373, 2022 03 03.
Article in English | MEDLINE | ID: mdl-34852174

ABSTRACT

RNA processing is increasingly recognized as a critical control point in the regulation of different hematopoietic lineages including megakaryocytes responsible for the production of platelets. Platelets are anucleate cytoplasts that contain a rich repertoire of RNAs encoding proteins with essential platelet functions derived from the parent megakaryocyte. It is largely unknown how RNA binding proteins contribute to the development and functions of megakaryocytes and platelets. We show that serine-arginine-rich splicing factor 3 (SRSF3) is essential for megakaryocyte maturation and generation of functional platelets. Megakaryocyte-specific deletion of Srsf3 in mice led to macrothrombocytopenia characterized by megakaryocyte maturation arrest, dramatically reduced platelet counts, and abnormally large functionally compromised platelets. SRSF3 deficient megakaryocytes failed to reprogram their transcriptome during maturation and to load platelets with RNAs required for normal platelet function. SRSF3 depletion led to nuclear accumulation of megakaryocyte mRNAs, demonstrating that SRSF3 deploys similar RNA regulatory mechanisms in megakaryocytes as in other cell types. Our study further suggests that SRSF3 plays a role in sorting cytoplasmic megakaryocyte RNAs into platelets and demonstrates how SRSF3-mediated RNA processing forms a central part of megakaryocyte gene regulation. Understanding SRSF3 functions in megakaryocytes and platelets provides key insights into normal thrombopoiesis and platelet pathologies as SRSF3 RNA targets in megakaryocytes are associated with platelet diseases.


Subject(s)
Blood Platelets/metabolism , Megakaryocytes/metabolism , RNA, Messenger , Serine-Arginine Splicing Factors , Thrombocytopenia , Thrombopoiesis/genetics , Animals , Mice , Mice, Knockout , RNA, Messenger/genetics , RNA, Messenger/metabolism , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Thrombocytopenia/genetics , Thrombocytopenia/metabolism
3.
Dev Cell ; 56(16): 2364-2380.e8, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34428400

ABSTRACT

Tissue regeneration and functional restoration after injury are considered as stem- and progenitor-cell-driven processes. In the central nervous system, stem cell-driven repair is slow and problematic because function needs to be restored rapidly for vital tasks. In highly regenerative vertebrates, such as zebrafish, functional recovery is rapid, suggesting a capability for fast cell production and functional integration. Surprisingly, we found that migration of dormant "precursor neurons" to the injury site pioneers functional circuit regeneration after spinal cord injury and controls the subsequent stem-cell-driven repair response. Thus, the precursor neurons make do before the stem cells make new. Furthermore, RNA released from the dying or damaged cells at the site of injury acts as a signal to attract precursor neurons for repair. Taken together, our data demonstrate an unanticipated role of neuronal migration and RNA as drivers of neural repair.


Subject(s)
Cell Movement , Nerve Regeneration , Neural Stem Cells/metabolism , RNA/metabolism , Animals , Neural Stem Cells/physiology , Zebrafish
4.
J Steroid Biochem Mol Biol ; 188: 48-58, 2019 04.
Article in English | MEDLINE | ID: mdl-30529760

ABSTRACT

Breast cancer is a complex disease, and approximately 30% of cases are considered to be hereditary or familial, with a large fraction of this being polygenic. However, it is difficult to demonstrate the functional importance of genes of small effect in population studies, and these genes are not always easily targeted for prevention. The SuprMam (suppressor of mammary tumour) breast cancer susceptibility alleles were previously identified as contributors to spontaneous mammary tumour development in Trp53+/- mice. In this study, we have generated and characterised congenic mice that contain the BALB/c SuprMam1 (susceptibility) locus on a C57BL/6 (resistant) background and discovered a subtle impairment in the vitamin D/ calcium/ parathyroid hormone (PTH) pathway. This was evident as altered gene expression in the mammary glands of key players in this pathway. Further functional analysis of the mice revealed elevated PTH levels, reduced Cyp27b1 expression in kidneys, and reduced trabecular bone volume/ tissue volume percentage. Plasma 25(OH)D and serum calcium were unchanged. This impairment was a result of genetic differences and occurred only in females, but the elevated PTH levels could be overcome with either calcium or vitamin D dietary supplementation. Either low levels of active vitamin D (1,25(OH)2D) or chronically elevated PTH levels may contribute to increased breast cancer susceptibility. These indicators are not easily measured in human population studies, but either mechanism may be preventable with dietary calcium or vitamin D supplements. Therefore, SuprMam congenic mice could serve as a valuable model for studying the role of gene-hormone-environment interactions of the vitamin D/ calcium/ PTH pathway in cancer and other diseases and for testing preventive interventions.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Calcium/metabolism , Parathyroid Hormone/metabolism , Signal Transduction , Vitamin D/metabolism , Animals , Breast Neoplasms/blood , Breast Neoplasms/pathology , Calcium/blood , Female , Genetic Loci , Genetic Predisposition to Disease , Male , Mice , Mice, Congenic , Mice, Inbred BALB C , Mice, Inbred C57BL , Parathyroid Hormone/blood , Vitamin D/blood
5.
Elife ; 72018 05 09.
Article in English | MEDLINE | ID: mdl-29741478

ABSTRACT

The establishment and maintenance of pluripotency depend on precise coordination of gene expression. We establish serine-arginine-rich splicing factor 3 (SRSF3) as an essential regulator of RNAs encoding key components of the mouse pluripotency circuitry, SRSF3 ablation resulting in the loss of pluripotency and its overexpression enhancing reprogramming. Strikingly, SRSF3 binds to the core pluripotency transcription factor Nanog mRNA to facilitate its nucleo-cytoplasmic export independent of splicing. In the absence of SRSF3 binding, Nanog mRNA is sequestered in the nucleus and protein levels are severely downregulated. Moreover, SRSF3 controls the alternative splicing of the export factor Nxf1 and RNA regulators with established roles in pluripotency, and the steady-state levels of mRNAs encoding chromatin modifiers. Our investigation links molecular events to cellular functions by demonstrating how SRSF3 regulates the pluripotency genes and uncovers SRSF3-RNA interactions as a critical means to coordinate gene expression during reprogramming, stem cell self-renewal and early development.


Subject(s)
Gene Expression Regulation , Nanog Homeobox Protein/genetics , Pluripotent Stem Cells/physiology , RNA, Messenger/metabolism , Serine-Arginine Splicing Factors/metabolism , Animals , Biological Transport , Cells, Cultured , Embryonic Stem Cells/physiology , Mice , Nucleocytoplasmic Transport Proteins/genetics , Protein Binding , RNA Splicing
6.
Bio Protoc ; 8(21): e3071, 2018 Nov 05.
Article in English | MEDLINE | ID: mdl-34532532

ABSTRACT

Mammalian cells express hundreds of RNA binding proteins (RBPs) that are essential regulators of RNA metabolism. RBP activity plays a central role in the control of gene expression programs and identification of RNA-protein interactions is critical for comprehensive understanding of gene regulation in cells. In recent years, various tools and techniques to identify these RNA-protein interactions have been developed. Among those, RNA immunoprecipitation is a precise and powerful assay that can be used to establish the physical interaction of an individual RBP with its target RNAs in vivo. Here, we describe a quantitative method for determining RNA-protein interactions using RNA immunoprecipitation (RNA-IP) assay in mouse embryonic stem cells carrying ectopically expressed mutant constructs. This protocol is reliable and easily adaptable to identify the interactions of endogenous or ectopically expressed RNAs and proteins.

7.
Bio Protoc ; 8(21): e3072, 2018 Nov 05.
Article in English | MEDLINE | ID: mdl-34532533

ABSTRACT

Gene expression is regulated through multiple steps at both transcriptional and post-transcriptional levels. The net abundance of mature mRNA species in cells is determined by the balance between transcription and degradation. Thus, the regulation of mRNA stability is a key post-transcriptional event that can greatly affect the net level of mRNAs in cells. The mRNA stability within cells can be measured indirectly by analyzing the mRNA half-life following transcription inhibition, where changes in mRNA levels are assumed to reflect mRNA degradation. Determination of mRNA half-life as a measure of mRNA stability is useful in understanding gene expression changes and underlying mechanisms regulating the level of transcripts at different physiological conditions or developmental stages. The protocol described here presents the analysis of mRNA decay as a measure for determining mRNA stability after transcriptional inhibition with Actinomycin D treatment in control and SRSF3 depleted mouse induced pluripotent stem cells (iPSC).

8.
Semin Cell Dev Biol ; 79: 113-122, 2018 07.
Article in English | MEDLINE | ID: mdl-29042235

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-transcriptionally by fine-tuning mRNA levels and translation during development and in adult tissues. miRNAs are transcribed as parts of longer precursors that undergo multiple processing steps before the mature miRNAs reach their target mRNAs in the cytoplasm. In addition to Drosha/DGCR8 and Dicer that are the essential components of the miRNA processing pathway, a range of other RNA binding proteins have recently been implicated in miRNA biogenesis. Among these, several well-known splicing factors have emerged as regulators of distinct miRNAs. In this review, we examine the mechanisms by which splicing factors regulate miRNA biogenesis. As both splicing factors and miRNAs play central roles in human disease biology we discuss implications of the links between splicing factors and miRNAs in human disease.


Subject(s)
Disease/genetics , Gene Expression Regulation , MicroRNAs/genetics , RNA Splicing Factors/genetics , Animals , Humans , Models, Genetic , RNA Precursors/genetics , RNA Processing, Post-Transcriptional , RNA Splicing Factors/metabolism , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...