Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 759
Filter
1.
Front Cell Infect Microbiol ; 14: 1418651, 2024.
Article in English | MEDLINE | ID: mdl-38933693

ABSTRACT

Background: This study unveils the intricate functional association between cyclic di-3',5'-adenylic acid (c-di-AMP) signaling, cellular bioenergetics, and the regulation of lipopolysaccharide (LPS) profile in Porphyromonas gingivalis, a Gram-negative obligate anaerobe considered as a keystone pathogen involved in the pathogenesis of chronic periodontitis. Previous research has identified variations in P. gingivalis LPS profile as a major virulence factor, yet the underlying mechanism of its modulation has remained elusive. Methods: We employed a comprehensive methodological approach, combining two mutants exhibiting varying levels of c-di-AMP compared to the wild type, alongside an optimized analytical methodology that combines conventional mass spectrometry techniques with a novel approach known as FLATn. Results: We demonstrate that c-di-AMP acts as a metabolic nexus, connecting bioenergetic status to nuanced shifts in fatty acid and glycosyl profiles within P. gingivalis LPS. Notably, the predicted regulator gene cdaR, serving as a potent regulator of c-di-AMP synthesis, was found essential for producing N-acetylgalactosamine and an unidentified glycolipid class associated with the LPS profile. Conclusion: The multifaceted roles of c-di-AMP in bacterial physiology are underscored, emphasizing its significance in orchestrating adaptive responses to stimuli. Furthermore, our findings illuminate the significance of LPS variations and c-di-AMP signaling in determining the biological activities and immunostimulatory potential of P. gingivalis LPS, promoting a pathoadaptive strategy. The study expands the understanding of c-di-AMP pathways in Gram-negative species, laying a foundation for future investigations into the mechanisms governing variations in LPS structure at the molecular level and their implications for host-pathogen interactions.


Subject(s)
Lipopolysaccharides , Porphyromonas gingivalis , Signal Transduction , Porphyromonas gingivalis/metabolism , Porphyromonas gingivalis/genetics , Lipopolysaccharides/metabolism , Virulence Factors/metabolism , Gene Expression Regulation, Bacterial , Energy Metabolism , Dinucleoside Phosphates/metabolism , Fatty Acids/metabolism , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
2.
Microrna ; 12(3): 171-176, 2023.
Article in English | MEDLINE | ID: mdl-38009000

ABSTRACT

Different modes of gene regulation, such as histone modification, transcription factor binding, DNA methylation, and microRNA (miRNA) expression, are critical for the spatiotemporal expression of genes in developing orofacial tissues. Aberrant regulation in any of these modes may contribute to orofacial defects. Noncoding RNAs (ncRNAs), such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs), have been shown to alter miRNA expression, and are thus emerging as novel contributors to gene regulation. Some of these appear to function as 'miRNA sponges', thereby diminishing the availability of these miRNAs to inhibit the expression of target genes. Such ncRNAs are also termed competitive endogenous RNAs (ceRNAs). Here, we examine emerging data that shed light on how lncRNAs and circRNAs may alter miRNA regulation, thus affecting orofacial development and potentially contributing to orofacial clefting.


Subject(s)
Cleft Lip , Cleft Palate , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cleft Lip/genetics , Cleft Palate/genetics , Gene Regulatory Networks
3.
Microrna ; 12(1): 63-81, 2023.
Article in English | MEDLINE | ID: mdl-36200240

ABSTRACT

BACKGROUND: Neural tube (NT) morphogenesis is reliant on the proper temporospatial expression of numerous genes and synchronized crosstalk between diverse signaling cascades and gene regulatory networks governing key cellular processes. MicroRNAs (miRNAs), a group of small non-coding regulatory RNAs, execute defining roles in directing key canonical pathways during embryogenesis. OBJECTIVE: In order to comprehend the mechanistic underpinnings of miRNA regulation of NT morphogenesis, we have identified in the current study various miRNAs and their target mRNAs associated with BMP signaling during critical stages of neurulation. METHODS: We previously demonstrated the expression of several miRNAs during the critical stages of neurulation (gestational days (GD) 8.5, 9.0, and 9.5) employing high-sensitivity, high-coverage microarrays. In the present study, bioinformatic analyses were used to identify miRNAs differentially expressed (DE) in the embryonic NT that target messenger RNAs (mRNAs) associated with the bone morphogenetic protein (BMP) signaling pathway. RNAs extracted from the developing NT were hybridized to both miRNA and mRNA arrays to evaluate miRNA-mRNA interactions. RESULTS: Bioinformatic analysis identified several DE miRNAs that targeted mRNAs encoding members of (and proteins associated with) the BMP signaling pathway - a signaling cascade central to normal NT development. CONCLUSION: Identification of the miRNAs and their mRNA targets associated with BMP signaling facilitates a better understanding of the crucial epigenetic mechanisms underlying normal NT development as well as the pathogenesis of NT defects. The current study supports the notion that miRNAs function as key regulators of neural tube morphogenesis via modulation of the BMP signaling cascade. Altered expression of these miRNAs during neurulation may therefore result in NT defects.


Subject(s)
MicroRNAs , Neural Tube , Neural Tube/metabolism , MicroRNAs/genetics , Embryonic Development , Signal Transduction/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling
4.
Cleft Palate Craniofac J ; 60(1): 27-38, 2023 01.
Article in English | MEDLINE | ID: mdl-34730446

ABSTRACT

OBJECTIVE: Normal development of the embryonic orofacial region requires precise spatiotemporal coordination between numerous genes. MicroRNAs represent small, single-stranded, non-coding molecules that regulate gene expression. This study examines the role of microRNA-22 (miR-22) in murine orofacial ontogeny. METHODS: Spatiotemporal and differential expression of miR-22 (mmu-miR-22-3p) within the developing secondary palate was determined by in situ hybridization and quantitative real-time PCR, respectively. Bioinformatic approaches were used to predict potential mRNA targets of miR-22 and analyze their association with cellular functions indispensable for normal orofacial ontogeny. An in vitro palate organ culture system was used to assess the role of miR-22 in secondary palate development. RESULTS: There was a progressive increase in miR-22 expression from GD12.5 to GD14.5 in palatal processes. On GD12.5 and GD13.5, miR-22 was expressed in the future oral, nasal, and medial edge epithelia. On GD14.5, miR-22 expression was observed in the residual midline epithelial seam (MES), the nasal epithelium and the mesenchyme, but not in the oral epithelium. Inhibition of miR-22 activity in palate organ cultures resulted in failure of MES removal. Bioinformatic analyses revealed potential mRNA targets of miR-22 that may play significant roles in regulating apoptosis, migration, and/or convergence/extrusion, developmental processes that modulate MES removal during palatogenesis. CONCLUSIONS: Results from the current study suggest a key role for miR-22 in the removal of the MES during palatogenesis and that miR-22 may represent a potential contributor to the etiology of cleft palate.


Subject(s)
MicroRNAs , Humans , Animals , Mice , Real-Time Polymerase Chain Reaction , MicroRNAs/genetics , Palate
5.
Differentiation ; 124: 1-16, 2022.
Article in English | MEDLINE | ID: mdl-35144134

ABSTRACT

Environmental and genetic factors contribute significantly to the etiology of orofacial clefting, which is one of the most common of human congenital craniofacial malformations. Current biological thought now recognizes that epigenetics represents a fundamental contributing process in embryogenesis. Indeed, many of the mechanisms whereby environmental insults affect key pathways crucial for proper embryonic growth and development are increasingly thought to be mediated via the epigenome. Epigenetic regulators, such as microRNAs (miRNAs), play vital roles in the ontogeny of the orofacial region. Evidence for this comes from conditional knockouts of Dicer or DGCR8, genes encoding key enzymes in the miRNA biosynthetic machinery, in neural crest cells. Such knockouts result in a range of craniofacial/orofacial anomalies, including cleft palate and cleft lip. Epigenetic pathways may thus represent key vehicles in the regulation, and misregulation, of gene expression during normal and abnormal orofacial embryogenesis. Significant strides have been made in the last decade in identifying miRNAs and their target genes involved in lip and palate morphogenesis. Such morphogenetic processes include apoptosis, cell proliferation, cell differentiation, and epithelial-mesenchymal transition (EMT). While some of the miRNA-target gene interactions have been functionally validated, many exhibit causal relationships that await functional confirmation. A plethora of genes associated with cleft palate/cleft lip have now been identified that provides a veritable treasure trove of information that could be harnessed to identify novel miRNA candidates for further analysis. In this review, we summarize studies identifying miRNAs involved in various aspects of lip and palate morphogenesis and whose aberrant expression may result in orofacial clefts.


Subject(s)
Cleft Lip , Cleft Palate , MicroRNAs , Cleft Lip/genetics , Cleft Palate/genetics , Epigenesis, Genetic/genetics , Humans , MicroRNAs/genetics , RNA-Binding Proteins
6.
Microrna ; 11(1): 2-11, 2022.
Article in English | MEDLINE | ID: mdl-35168515

ABSTRACT

It is estimated that 2-4% of live births will have a birth defect (BD). The availability of biomarkers for the prenatal detection of BDs will facilitate early risk assessment, prompt medical intervention and ameliorating disease severity. miRNA expression levels are often found to be altered in many diseases. There is, thus, a growing interest in determining whether miRNAs, particularly extracellular miRNAs, can predict, diagnose, or monitor BDs. These miRNAs, typically encapsulated in exosomes, are released by cells (including those of the fetus and placenta) into the extracellular milieu, such as blood, urine, saliva and cerebrospinal fluid, thereby enabling interaction with target cells. Exosomal miRNAs are stable, protected from degradation, and retain functionality. The observation that placental and fetal miRNAs can be detected in maternal serum, provides a strong rationale for adopting miRNAs as noninvasive prenatal biomarkers for BDs. In this mini-review, we examine the current state of research involving the use of miRNAs as prognostic and diagnostic biomarkers for BD.


Subject(s)
Exosomes , MicroRNAs , Biomarkers , Congenital Abnormalities , Exosomes/genetics , Exosomes/metabolism , Female , Humans , Infant, Newborn , MicroRNAs/genetics , Placenta/metabolism , Pregnancy , Saliva
7.
Microrna ; 9(3): 168-173, 2020.
Article in English | MEDLINE | ID: mdl-31556862

ABSTRACT

The adverse developmental effects of exposure to Cigarette Smoke (CS) during pregnancy are documented in this paper. These include low birth weight, congenital anomalies, preterm birth, fetal mortality and morbidity. The current biological thought now recognizes that epigenetics represents a fundamental contributing process in embryogenesis, and that the environment can have a profound effect on shaping the epigenome. It has become increasingly recognized that genes encoding microRNAs (miRNAs) might be potential loci for congenital disabilities. One means by which CS can cause developmental anomalies may be through epigenetic mechanisms involving altered miRNA expression. While several studies have focused on genes affected by CS during embryonic/ fetal development, there is a paucity of knowledge on the involvement of miRNAs in this process. This brief review summarizes the current state of knowledge in this area.


Subject(s)
Embryonic Development/drug effects , Epigenesis, Genetic/drug effects , MicroRNAs/genetics , Smoking/adverse effects , Female , Gene Expression Regulation, Developmental/drug effects , Humans , Pregnancy
8.
Birth Defects Res ; 111(20): 1593-1610, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31385455

ABSTRACT

In this review, we highlight the current state of knowledge of the diverse roles nucleic acid methylation plays in the embryonic development of the orofacial region and how aberrant methylation may contribute to orofacial clefts. We also consider the role of methylation in the regulation of neural crest cell function as it pertains to orofacial ontogeny. Changes in DNA methylation, as a consequence of environmental effects, have been observed in the regulatory regions of several genes, potentially identifying new candidate genes for orofacial clefting and opening promising new avenues for further research. While the focus of this review is primarily on the nonsyndromic forms of orofacial clefting, syndromic forms are briefly discussed in the context of aberrant nucleic acid methylation.


Subject(s)
DNA Methylation , Face/embryology , Morphogenesis , Mouth/embryology , Nucleic Acids/metabolism , Animals , Humans , Neural Crest/embryology
9.
Reprod Toxicol ; 86: 76-85, 2019 06.
Article in English | MEDLINE | ID: mdl-30953684

ABSTRACT

Prenatal exposure to arsenic, a naturally occurring toxic element, causes neural tube defects (NTDs) and, in animal models, orofacial anomalies. Since aberrant development or migration of cranial neural crest cells (CNCCs) can also cause similar anomalies within developing embryos, we examined the effects of in utero exposure to sodium arsenate on gene expression patterns in pure populations of CNCCs, isolated by fluorescence activated cell sorting (FACS), from Cre/LoxP reporter mice. Changes in gene expression were analyzed using Affymetrix GeneChip® microarrays and expression of selected genes was verified by TaqMan quantitative real-time PCR. We report, for the first time, arsenate-induced alterations in the expression of a number of novel candidate genes and canonical cascades that may contribute to the pathogenesis of orofacial defects. Ingenuity Pathway and NIH-DAVID analyses revealed cellular response pathways, biological themes, and potential upstream regulators, that may underlie altered fetal programming of arsenate exposed CNCCs.


Subject(s)
Arsenates/toxicity , Gene Expression Regulation, Developmental/drug effects , Maternal-Fetal Exchange , Neural Crest/drug effects , Animals , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Female , Mice, Transgenic , Neural Crest/metabolism , Pregnancy
10.
Drug Metab Rev ; 50(2): 193-207, 2018 05.
Article in English | MEDLINE | ID: mdl-29455551

ABSTRACT

5-Aza-2'-deoxycytidine (AzaD), also known as Decitabine, is a deoxycytidine analog that is typically used to activate methylated and silenced genes by promoter demethylation. However, a survey of the scientific literature indicates that promoter demethylation may not be the only (or, indeed, the major) mechanism by which AzaD affects gene expression. Regulation of gene expression by AzaD can occur in several ways, including some that are independent of DNA demethylation. Results from several studies indicate that the effect of AzaD on gene expression is highly context-dependent and can differ for the same gene under different environmental settings. This may, in part, be due to the nature of the silencing mechanism(s) involved - DNA methylation, repressive histone modifications, or a combination of both. The varied effects of AzaD on such context-dependent regulation of gene expression may underlie some of the diverse responses exhibited by patients undergoing AzaD therapy. In this review, we describe the salient properties of AzaD with particular emphasis on its diverse effects on gene expression, aspects that have barely been discussed in most reviews of this interesting drug.


Subject(s)
Azacitidine/analogs & derivatives , Animals , Antimetabolites, Antineoplastic/pharmacology , Azacitidine/pharmacology , DNA Methylation/drug effects , Decitabine , Gene Expression/drug effects , Humans
11.
Reprod Toxicol ; 67: 85-99, 2017 01.
Article in English | MEDLINE | ID: mdl-27915011

ABSTRACT

In this study, we identify gene targets and cellular events mediating the teratogenic action(s) of 5-Aza-2'-deoxycytidine (AzaD), an inhibitor of DNA methylation, on secondary palate development. Exposure of pregnant mice (on gestation day (GD) 9.5) to AzaD for 12h resulted in the complete penetrance of cleft palate (CP) in fetuses. Analysis of cells of the embryonic first branchial arch (1-BA), in fetuses exposed to AzaD, revealed: 1) significant alteration in expression of genes encoding several morphogenetic factors, cell cycle inhibitors and regulators of apoptosis; 2) a decrease in cell proliferation; and, 3) an increase in apoptosis. Pyrosequencing of selected genes, displaying pronounced differential expression in AzaD-exposed 1-BAs, failed to reveal significant alterations in CpG methylation levels in their putative promoters or gene bodies. CpG methylation analysis suggested that the effects of AzaD on gene expression were likely indirect.


Subject(s)
Azacitidine/analogs & derivatives , Branchial Region/drug effects , Cleft Palate/chemically induced , Embryonic Development/drug effects , Gene Expression Regulation, Developmental/drug effects , Animals , Apoptosis/drug effects , Apoptosis/genetics , Azacitidine/toxicity , Branchial Region/embryology , Branchial Region/pathology , Cell Proliferation/drug effects , Cleft Palate/embryology , Cleft Palate/genetics , Cleft Palate/pathology , DNA Methylation/drug effects , Decitabine , Embryonic Development/genetics , Female , Gene Expression Profiling , Gestational Age , Mice, Inbred ICR , Pregnancy
12.
Reprod Toxicol ; 67: 100-110, 2017 01.
Article in English | MEDLINE | ID: mdl-27923600

ABSTRACT

Defects in development of the secondary palate, which arise from the embryonic first branchial arch (1-BA), can cause cleft palate (CP). Administration of 5-Aza-2'-deoxycytidine (AzaD), a demethylating agent, to pregnant mice on gestational day 9.5 resulted in complete penetrance of CP in fetuses. Several genes critical for normal palatogenesis were found to be upregulated in 1-BA, 12h after AzaD exposure. MethylCap-Seq (MCS) analysis identified several differentially methylated regions (DMRs) in DNA extracted from AzaD-exposed 1-BAs. Hypomethylated DMRs did not correlate with the upregulation of genes in AzaD-exposed 1-BAs. However, most DMRs were associated with endogenous retroviral elements. Expression analyses suggested that interferon signaling was activated in AzaD-exposed 1-BAs. Our data, thus, suggest that a 12-h in utero AzaD exposure demethylates and activates endogenous retroviral elements in the 1-BA, thereby triggering an interferon-mediated response. This may result in the dysregulation of key signaling pathways during palatogenesis, causing CP.


Subject(s)
Azacitidine/analogs & derivatives , Branchial Region/drug effects , Cleft Palate/chemically induced , DNA Methylation/drug effects , Embryonic Development/drug effects , Gene Expression Regulation, Developmental/drug effects , Animals , Azacitidine/toxicity , Branchial Region/embryology , Cleft Palate/embryology , Cleft Palate/genetics , Decitabine , Embryonic Development/genetics , Female , Gene Expression Profiling , Gestational Age , Mice, Inbred ICR , Pregnancy
13.
Emerg Infect Dis ; 22(1): 65-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26689114

ABSTRACT

Antimicrobial resistance profiles were determined for Neisseria gonorrhoeae strains isolated in Canada during 2010-2014. The proportion of isolates with decreased susceptibility to cephalosporins declined significantly between 2011 and 2014, whereas azithromycin resistance increased significantly during that period. Continued surveillance of antimicrobial drug susceptibilities is imperative to inform treatment guidelines.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Azithromycin/therapeutic use , Cephalosporins/therapeutic use , Drug Resistance, Bacterial/drug effects , Gonorrhea/drug therapy , Neisseria gonorrhoeae/drug effects , Canada , Humans , Microbial Sensitivity Tests/methods
14.
Microrna ; 4(1): 64-71, 2015.
Article in English | MEDLINE | ID: mdl-26159804

ABSTRACT

Clefting of the secondary palate is the most common birth defect in humans. Midline fusion of the bilateral palatal processes is thought to involve apoptosis, epithelial to mesenchymal transition, and cell migration of the medial edge epithelium (MEE), the specialized cells of the palate that mediate fusion of the palatal processes during fetal development. Data presented in this manuscript are the result of analyses designed to identify microRNAs that are expressed and regulated by TGFß3 in developing palatal MEE. The expression of 7 microRNAs was downregulated and 1 upregulated in isolated MEE from wildtype murine fetuses on gestational day (GD) 13.5 to GD14.5 (prior to and during epithelial fusion of the palatal processes, respectively). Among this group were miRNAs linked to apoptosis (miR-378) and epithelial to mesenchymal transformation (miR-200b, miR-205, and miR-93). Tgfß3(-/-) fetuses, which present with a complete and isolated cleft of the secondary palate, exhibited marked dysregulation of distinct miRNAs both in the palatal MEE and mesenchyme when compared to comparable wild-type tissue. These included, among others, miRNAs known to affect apoptosis (miR-206 and miR-186). Dysregulation of miRNAs in the mesenchyme underlying the palatal MEE of Tgfß3(-/-) fetuses is also discussed in relation to epithelial-mesenchymal transformation of the MEE. These results are the first systematic analysis of the expression of microRNAs in isolated fetal palatal epithelium and mesenchyme. Moreover, analysis of the Tgfß3 knockout mouse model has enabled identification of miRNAs with altered expression that may contribute to the cleft palate phenotype.


Subject(s)
Cleft Palate/embryology , Mice/embryology , MicroRNAs/genetics , Palate/embryology , Transforming Growth Factor beta3/genetics , Animals , Cleft Palate/genetics , Epithelium/embryology , Epithelium/metabolism , Fetus/embryology , Fetus/metabolism , Gene Deletion , Gene Expression Regulation, Developmental , Laser Capture Microdissection , Mice/genetics , Mice, Knockout , Palate/metabolism
15.
Anaesth Intensive Care ; 42(6): 715-22, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25342403

ABSTRACT

Augmented renal clearance (ARC) refers to increased solute elimination by the kidneys. ARC has considerable implications for altered drug concentrations. The aims of this study were to describe the prevalence of ARC in a select cohort of patients admitted to a Malaysian intensive care unit (ICU) and to compare measured and calculated creatinine clearances in this group. Patients with an expected ICU stay of <24 hours plus an admission serum creatinine concentration <120 µmol/l, were enrolled from May to July 2013. Twenty-four hour urinary collections and serum creatinine concentrations were used to measure creatinine clearance. A total of 49 patients were included, with a median age of 34 years. Most study participants were male and admitted after trauma. Thirty-nine percent were found to have ARC. These patients were more commonly admitted in emergency (P=0.03), although no other covariants were identified as predicting ARC, likely due to the inclusion criteria and the study being under-powered. Significant imprecision was demonstrated when comparing calculated Cockcroft-Gault creatinine clearance (Crcl) and measured Crcl. Bias was larger in ARC patients, with Cockcroft-Gault Crcl being significantly lower than measured Crcl (P <0.01) and demonstrating poor correlation (rs=-0.04). In conclusion, critically ill patients with 'normal' serum creatinine concentrations have varied Crcl. Many are at risk of ARC, which may necessitate individualised drug dosing. Furthermore, significant bias and imprecision between calculated and measured Crcl exists, suggesting clinicians should carefully consider which method they employ in assessing renal function.


Subject(s)
Creatinine/blood , Creatinine/urine , Intensive Care Units/statistics & numerical data , Kidney Function Tests/methods , Kidney Function Tests/statistics & numerical data , Kidney/physiopathology , Adult , Cohort Studies , Critical Illness , Female , Glomerular Filtration Rate/physiology , Humans , Inpatients/statistics & numerical data , Malaysia , Male , Middle Aged , Risk Factors , Young Adult
16.
J Neurosci Res ; 92(7): 927-36, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24692022

ABSTRACT

Valproic acid (VPA) is commonly used to treat bipolar disorder (BD), but its therapeutic role has not been clearly elucidated. To gain insights into VPA's mechanism of action, proteomic analysis was used to identify differentially expressed proteins in the rat prefrontal cortex (PFC), a region particularly affected in BD, after 6 weeks of VPA treatment. Proteins from PFCs of control and VPA-treated rats were separated by 2D-DIGE and identified by mass spectrometry. Among the 2,826 protein spots resolved, the abundance of 19 proteins was found to be significantly altered in the VPA-treated group (with the levels of three proteins increasing and 16 decreasing). Seven proteins whose levels were significantly altered after chronic VPA exposure were quantified by Western blot analysis. The 19 identified proteins represent potential new targets for VPA action and should aid in our understanding of the role of VPA in BD.


Subject(s)
Anticonvulsants/metabolism , Nerve Tissue Proteins/metabolism , Prefrontal Cortex/drug effects , Proteomics/methods , Valproic Acid/pharmacology , Animals , Electrophoresis, Gel, Two-Dimensional , Gene Expression Regulation/drug effects , Male , Models, Biological , Prefrontal Cortex/metabolism , Protein Interaction Maps/drug effects , Rats , Rats, Sprague-Dawley , Time Factors
17.
Microrna ; 3(3): 160-73, 2014.
Article in English | MEDLINE | ID: mdl-25642850

ABSTRACT

Environmental factors contribute to the etiology of cleft palate (CP). Environmental factors can also affect gene expression via alterations in DNA methylation suggesting a possible mechanism for the induction of CP. Identification of genes methylated during development of the secondary palate provides the basis for examination of the means by which environmental factors may adversely influence palatal ontogeny. We previously characterized the methylome of the developing murine secondary palate focusing primarily on protein- encoding genes. We now extend this study to include methylated microRNA (miRNA) genes. A total of 42 miRNA genes were found to be stably methylated in developing murine palatal tissue. Twenty eight of these were localized within host genes. Gene methylation was confirmed by pyrosequencing of selected miRNA genes. Integration of methylated miRNA gene and expression datasets identified 62 miRNAs, 69% of which were non-expressed. For a majority of genes (83%), upstream CpG islands (CGIs) were highly methylated suggesting down-regulation of CGI-associated promoters. DAVID and IPA analyses indicated that both expressed and non-expressed miRNAs target identical signaling pathways and biological processes associated with palatogenesis. Furthermore, these analyses also identified novel signaling pathways whose roles in palatogenesis remain to be elucidated. In summary, we identify methylated miRNA genes in the developing murine secondary palate, correlate miRNA gene methylation with expression of their cognate miRNA transcripts, and identify pathways and biological processes potentially mediated by these miRNAs.


Subject(s)
DNA Methylation , MicroRNAs/genetics , Palate/embryology , Palate/metabolism , Animals , CpG Islands , Down-Regulation , Gene Expression Regulation, Developmental , Mice , Mice, Inbred ICR , Promoter Regions, Genetic
18.
Anal Biochem ; 442(1): 68-74, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-23911529

ABSTRACT

Laser capture microdissection (LCM) is a superior method for nondestructive collection of specific cell populations from tissue sections. Although DNA, RNA, and protein have been analyzed from LCM-procured samples, epigenetic analyses, particularly of fetal, highly hydrated tissue, have not been attempted. A standardized protocol with quality assurance measures was established to procure cells by LCM of the medial edge epithelia (MEE) of the fetal palatal processes for isolation of intact microRNA for expression analyses and genomic DNA (gDNA) for CpG methylation analyses. MicroRNA preparations, obtained using the RNAqueous Micro kit (Life Technologies), exhibited better yields and higher quality than those obtained using the Arcturus PicoPure RNA Isolation kit (Life Technologies). The approach was validated using real-time polymerase chain reaction (PCR) to determine expression of selected microRNAs (miR-99a and miR-200b) and pyrosequencing to determine CpG methylation status of selected genes (Aph1a and Dkk4) in the MEE. These studies describe an optimized approach for employing LCM of epithelial cells from fresh frozen fetal tissue that enables quantitative analyses of microRNA expression levels and CpG methylation.


Subject(s)
CpG Islands/genetics , Epigenesis, Genetic/genetics , Epithelium/metabolism , Fetus/metabolism , Laser Capture Microdissection , MicroRNAs/genetics , Animals , DNA Methylation , Mice
19.
Birth Defects Res A Clin Mol Teratol ; 97(4): 171-86, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23554260

ABSTRACT

BACKGROUND: Environmental factors contribute to the etiology of cleft palate (CP). Identification of genes that are methylated during development of the secondary palate will contribute to a better understanding of the gene-environment link contributing to CP. METHODS: Genomic DNA fragments from secondary palate tissue from gestational days (GDs) 12 to 14 were subjected to Selective Enrichment of Methylated DNA (SEMD) and used to probe NimbleGen 2.1M mouse promoter arrays. Input (control) and SEMD samples were labeled with Cy3 and Cy5, respectively, and used for array hybridization (three arrays per GD). Data were analyzed using the Bioconductor package Ringo. Gene methylation was verified by pyrosequencing analysis and expression by quantitative real-time PCR. RESULTS: A total of 5577 methylated genes were identified during palate development: (1) 74% of genes were methylated on all three GDs; (2) CpG islands accounted for only 30% of methylated regions of interest (MRIs); (3) location of MRIs was more often observed in gene bodies (73%) than in promoters; (4) evaluation of MRIs on GDs 12-14 revealed no significant differentially methylated regions; (5) DAVID analysis of MRIs revealed that the cadherin and Wnt signaling pathways, as well as pathways involved in proteoglycan synthesis, were significantly enriched for methylated genes. CONCLUSIONS: Our prior studies identified differentially expressed mRNAs and microRNAs in the developing palate. The current study complements these studies by identifying genes whose expression may be altered as a result of DNA methylation.


Subject(s)
DNA Methylation/genetics , Epigenesis, Genetic/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Palate/growth & development , Palate/metabolism , Animals , Cleft Palate/genetics , Cleft Palate/pathology , CpG Islands , Female , Male , Mice , Mice, Inbred ICR , Oligonucleotide Array Sequence Analysis , Palate/cytology , Sequence Analysis, DNA , Wnt Signaling Pathway/genetics , Wnt Signaling Pathway/physiology
20.
Epigenomics ; 5(2): 131-46, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23566091

ABSTRACT

AIM: Identification of genes that contribute to secondary palate development provide a better understanding of the etiology of palatal clefts. Gene-expression profiling of the murine palate from gestational days 12-14 (GD12-14), a critical period in palate development, identified Sox4 as a differentially expressed gene. In this study, we have examined if the differential expression of Sox4 in the palate is due to changes in DNA methylation. MATERIALS & METHODS: In situ hybridization analysis was used to localize the expression of Sox4 in the developing murine secondary palate. CpG methylation profiling of a 1.8-kb upstream region of Sox4 in the secondary palate from GD12-14 and transfection analysis in murine embryonic maxillary mesenchymal cells using Sox4 deletion, mutant and in vitro methylated plasmid constructs were used to identify critical CpG residues regulating Sox4 expression in the palate. RESULTS: Spatiotemporal analysis revealed that Sox4 is expressed in the medial edge epithelium and presumptive rugae-forming regions of the palate from GD12 to GD13. Following palatal shelf fusion on GD14, Sox4 was expressed exclusively in the epithelia of the palatal rugae, structures that serve as signaling centers for the anteroposterior extension of the palate, and that are thought to serve as neural stem cell niches. Methylation of a 1.8-kb region upstream of Sox4, containing the putative promoter, completely eliminated promoter activity. CpG methylation profiling of the 1.8-kb region identified a CpG-poor region (DMR4) that exhibited significant differential methylation during palate development, consistent with changes in Sox4 mRNA expression. Changes in the methylation of DMR4 were attributed primarily to CpGs 83 and 85. CONCLUSION: Our studies indicate that Sox4 is an epigenetically regulated gene that likely integrates multiple signaling systems for mediating palatal fusion, palatal extension and/or the maintenance of the neural stem cell niche in the rugae.


Subject(s)
DNA Methylation/genetics , Epigenesis, Genetic/genetics , Palate/growth & development , SOXC Transcription Factors/genetics , Animals , CpG Islands/genetics , Epithelium/growth & development , Gene Expression Profiling , Gene Expression Regulation, Developmental , Mesenchymal Stem Cells , Mice , Neural Stem Cells/cytology , Palate/cytology , Palate/metabolism , SOXC Transcription Factors/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...