Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38068898

ABSTRACT

Ischemic heart disease and its complications, such as myocardial infarction and heart failure, are the leading causes of death in modern society. The adult heart innately lacks the capacity to regenerate the damaged myocardium after ischemic injury. Multiple lines of evidence indicated that stem-cell-based transplantation is one of the most promising treatments for damaged myocardial tissue. Different kinds of stem cells have their advantages for treating ischemic heart disease. One facet of their mechanism is the paracrine effect of the transplanted cells. Particularly promising are stem cells derived from cardiac tissue per se, referred to as cardiosphere-derived cells (CDCs), whose therapeutic effect is mediated by the paracrine mechanism through secretion of multiple bioactive molecules providing immunomodulatory, angiogenic, anti-fibrotic, and anti-inflammatory effects. Although secretome-based therapies are increasingly being used to treat various cardiac pathologies, many obstacles remain because of population heterogeneity, insufficient understanding of potential modulating compounds, and the principles of secretome regulation, which greatly limit the feasibility of this technology. In addition, components of the inflammatory microenvironment in ischemic myocardium may influence the secretome content of transplanted CDCs, thus altering the efficacy of cell therapy. In this work, we studied how Tumor necrosis factor alpha (TNFa), as a key component of the pro-inflammatory microenvironment in damaged myocardium from ischemic injury and heart failure, may affect the secretome content of CDCs and their angiogenic properties. We have shown for the first time that TNFa may act as a promising compound modulating the CDC secretome, which induces its profiling to enhance proangiogenic effects on endothelial cells. These results allow us to elucidate the underlying mechanisms of the impact of the inflammatory microenvironment on transplanted CDCs and may contribute to the optimization of CDC efficiency and the development of the technology for producing the CDC secretome with enhanced proangiogenic properties for cell-free therapy.


Subject(s)
Angiogenesis , Heart Failure , Myocardial Ischemia , Tumor Necrosis Factor-alpha , Humans , Endothelial Cells/metabolism , Heart Failure/metabolism , Myocardial Ischemia/metabolism , Myocytes, Cardiac/metabolism , Secretome , Tumor Necrosis Factor-alpha/metabolism
2.
Int J Mol Sci ; 24(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37958542

ABSTRACT

One of the largest challenges to the implementation of cardiac cell therapy is identifying selective reparative targets to enhance stem/progenitor cell therapeutic efficacy. In this work, we hypothesized that such a target could be an urokinase-type plasminogen activator receptor (uPAR)-a glycosyl-phosphatidyl-inositol-anchored membrane protein, interacting with urokinase. uPAR is able to form complexes with various transmembrane proteins such as integrins, activating intracellular signaling pathway and thus regulating multiple cell functions. We focused on studying the CD117+ population of cardiac mesenchymal progenitor cells (MPCs), expressing uPAR on their surface. It was found that the number of CD117+ MPCs in the heart of the uPAR-/- mice is lower, as well as their ability to proliferate in vitro compared with cells from wild-type animals. Knockdown of uPAR in CD117+ MPCs of wild-type animals was accompanied by a decrease in survival rate and Akt signaling pathway activity and by an increase in the level of caspase activity in these cells. That suggests the role of uPAR in supporting cell survival. After intramyocardial transplantation of uPAR(-) MPCs, reduced cell retention and angiogenesis stimulation were observed in mice with myocardial infarction model compared to uPAR(+) cells transplantation. Taken together, the present results appear to prove a novel mechanism of uPAR action in maintaining the survival and angiogenic properties of CD117+ MPCs. These results emphasize the importance of the uPAR as a potential pharmacological target for the regulation of reparative properties of myocardial mesenchymal progenitor cells.


Subject(s)
Mesenchymal Stem Cells , Myocardium , Receptors, Urokinase Plasminogen Activator , Animals , Mice , Integrins , Mesenchymal Stem Cells/metabolism , Receptors, Urokinase Plasminogen Activator/genetics , Receptors, Urokinase Plasminogen Activator/metabolism , Signal Transduction , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism , Myocardium/cytology
3.
Int J Obes (Lond) ; 47(8): 732-742, 2023 08.
Article in English | MEDLINE | ID: mdl-37100877

ABSTRACT

BACKGROUND: In recent years, there has been an increase in the prevalence of obesity and type 2 diabetes mellitus (T2DM). Development of visceral instead of subcutaneous adipose tissue is pathogenic and increases the risk of metabolic abnormalities. We hypothesize that visceral adipocytes and stromal cells are able to deteriorate other fat depots metabolism via secretory mechanisms. METHODS: We study the regulatory role of visceral adipose-derived stem cells (vADSC) from donors with obesity and T2DM or normal glucose tolerance (NGT) on healthy subcutaneous ADSC (sADSC) in the Transwell system. Lipid droplets formation during adipogenesis was assessed by confocal microscopy. Cell metabolism was evaluated by 14C-glucose incorporation analysis and western blotting. vADSC secretome was assessed by Milliplex assay. RESULTS: We showed that both NGT and T2DM vADSC had mesenchymal phenotype, but expression of CD29 was enhanced, whereas expressions of CD90, CD140b and IGF1R were suppressed in both NGT and T2DM vADSC. Co-differentiation with T2DM vADSC increased lipid droplet size and stimulated accumulation of fatty acids in adipocytes from healthy sADSC. In mature adipocytes T2DM vADSC stimulated triglyceride formation, whereas NGT vADSC activated oxidative metabolism. Secretome of NGT vADSC was pro-inflammatory and pro-angiogenic in comparison with T2DM vADSC. CONCLUSIONS: The present study has demonstrated the critical role of secretory interactions between visceral and subcutaneous fat depots both in the level of progenitor and mature cells. Mechanisms of these interactions are related to direct exchange of metabolites and cytokines secretion.


Subject(s)
Diabetes Mellitus, Type 2 , Mesenchymal Stem Cells , Humans , Diabetes Mellitus, Type 2/metabolism , Adipocytes/metabolism , Obesity/metabolism , Mesenchymal Stem Cells/metabolism , Glucose/metabolism , Cytokines/metabolism , Triglycerides/metabolism
4.
Int J Mol Sci ; 24(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36835254

ABSTRACT

Thermogenic adipocytes have potential utility for the development of approaches to treat type 2 diabetes and obesity-associated diseases. Although several reports have proved the positive effect of beige and brown adipocyte transplantation in obese mice, translation to human cell therapy needs improvement. Here, we describe the application of CRISPR activation (CRISPRa) technology for generating safe and efficient adipose-tissue-engineered constructs with enhanced mitochondrial uncoupling protein 1 (UCP1) expression. We designed the CRISPRa system for the activation of UCP1 gene expression. CRISPRa-UCP1 was delivered into mature adipocytes by a baculovirus vector. Modified adipocytes were transplanted in C57BL/6 mice, followed by analysis of grafts, inflammation and systemic glucose metabolism. Staining of grafts on day 8 after transplantation shows them to contain UCP1-positive adipocytes. Following transplantation, adipocytes remain in grafts and exhibit expression of PGC1α transcription factor and hormone sensitive lipase (HSL). Transplantation of CRISPRa-UCP1-modified adipocytes does not influence glucose metabolism or inflammation in recipient mice. We show the utility and safety of baculovirus vectors for CRISPRa-based thermogenic gene activation. Our findings suggest a means of improving existing cell therapy approaches using baculovirus vectors and CRISPRa for modification and transplantation of non-immunogenic adipocytes.


Subject(s)
Adipose Tissue, Brown , Uncoupling Protein 1 , Animals , Humans , Mice , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/transplantation , Clustered Regularly Interspaced Short Palindromic Repeats , Diabetes Mellitus, Type 2/therapy , Glucose/metabolism , Mice, Inbred C57BL , Thermogenesis/genetics , Uncoupling Protein 1/metabolism
5.
Life (Basel) ; 12(5)2022 May 06.
Article in English | MEDLINE | ID: mdl-35629356

ABSTRACT

OBJECTIVE: Sedentary behavior with overnutrition provokes the development of obesity, insulin resistance, and type 2 diabetes mellitus (T2DM). The main progenitor cells of adipose tissue are adipose-derived stem cells (ADSCs) which can change differentiation, metabolic, and secretory phenotypes under obesity conditions. The purpose of this study was to evaluate ADSC osteogenesis activity among patients with obesity in normal glucose tolerance (NGT) and T2DM conditions. METHODS: In the study, ADSCs from donors with obesity were used. After clinical characterization, all patients underwent bariatric surgery and ADSCs were isolated from subcutaneous fat biopsies. ADSCs were subjected to osteogenic differentiation, stained with Alizarin Red S, and harvested for real-time PCR and Western blotting. Cell senescence was evaluated with a ß-galactosidase-activity-based assay. RESULTS: Our results demonstrated the significantly increased calcification of ADSC on day 28 of osteogenesis in the T2DM group. These data were confirmed by the statistically significant enhancement of RUNX2 gene expression, which is a master regulator of osteogenesis. Protein expression analysis showed the increased expression of syndecan 1 and collagen I before and during osteogenesis, respectively. Moreover, T2DM ADSCs demonstrated an increased level of cellular senescence. CONCLUSION: We suggest that T2DM-associated cellular senescence can cause ADSC differentiation to shift toward osteogenesis, the impaired formation of new fat depots in adipose tissue, and the development of insulin resistance. The balance between ADSC adipo- and osteogenesis commitment is crucial for the determination of the metabolic fate of patients and their adipose tissue.

6.
Front Endocrinol (Lausanne) ; 12: 777589, 2021.
Article in English | MEDLINE | ID: mdl-34956089

ABSTRACT

Objective: We aimed to investigate insulin-, mTOR- and SGK1-dependent signaling basal states in morbidly obese patients' fat. We analyzed the correlation between the signaling activity, carbohydrate metabolism, and incretin profiles of patients. Methods: The omental and subcutaneous fat was obtained in patients with obesity. The omental study included 16 patients with normal glucose tolerance (NGT) and 17 patients with type 2 diabetes mellitus (T2DM); the subcutaneous study included 9 NGT patients and 12 T2DM patients. Insulin resistance was evaluated using the hyperinsulinemic euglycemic clamp test and HOMA-IR index. The oral glucose tolerance test (OGTT) for NGT patients and mixed meal tolerance test (MMTT) for T2DM patients were performed. The levels of incretins (GLP-1, GIP, oxyntomodulin) and glucagon were measured during the tests. Signaling was analyzed by Western blotting in adipose tissue biopsies. Results: We have shown equal levels of basal phosphorylation of insulin- and mTOR-dependent signaling in omental fat depot in NGT and T2DM obese patients. Nevertheless, pNDRG1-T346 was decreased in omental fat of T2DM patients. Correlation analysis has shown an inverse correlation of pNDRG1-T346 in omental fat and diabetic phenotype (HbA1c, impaired incretin profile (AUC GLP-1, glucagon)). Moreover, pNDRG1-T346 in subcutaneous fat correlated with impaired incretin levels among obese patients (inverse correlation with AUC glucagon and AUC GIP). Conclusions: According to results of the present study, we hypothesize that phosphorylation of pNDRG1-T346 can be related to impairment in incretin hormone processing. pNDRG1-T346 in adipose tissue may serve as a marker of diabetes-associated impairments of the systemic incretin profile and insulin sensitivity.


Subject(s)
Adipose Tissue/metabolism , Cell Cycle Proteins/metabolism , Diabetes Mellitus, Type 2/metabolism , Incretins/blood , Intracellular Signaling Peptides and Proteins/metabolism , Obesity, Morbid/metabolism , Adipose Tissue/pathology , Adult , Biomarkers/metabolism , Biopsy , Case-Control Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Female , Glucose Tolerance Test , Humans , Incretins/metabolism , Insulin Resistance/physiology , Male , Metabolome , Middle Aged , Obesity, Morbid/complications , Obesity, Morbid/pathology , Phosphorylation
7.
Biol Open ; 10(9)2021 09 15.
Article in English | MEDLINE | ID: mdl-34494647

ABSTRACT

Ex vivo, gene therapy is a powerful approach holding great promises for the treatment of both genetic and acquired diseases. Adeno-associated virus (AAV) vectors are a safe and efficient delivery system for modification of mesenchymal stem cells (MSC) that could maximize their therapeutic benefits. Assessment of MSC viability and functional activity after infection with new AAV serotypes is necessary, due to AAV tropism to specific cell types. We infected human and rat adipose-tissue MSC with hybrid AAV-DJ serotype vectors carrying GFP and SCF genes. GFP expression from AAV-DJ was about 1.5-fold superior to that observed with AAV-2 and lasted for at least 21 days as was evaluated by flow cytometry and fluorescence microscopy. AAV-DJ proves to be suitable for the infection of rat and human MSC with a similar efficiency. Infected MSC were still viable but showed a 25-30% growth-rate slowdown. Moreover, we found an increase of SERPINB2 mRNA expression in human MSC while expression of other oxidative stress markers and extracellular matrix proteins was not affected. These results suggest that there is a differential cellular response in MSC infected with AAV viral vectors, which should be taken into account as it can affect the expected outcome for the therapeutic application.


Subject(s)
Dependovirus/genetics , Genetic Therapy , Genetic Vectors/blood , Mesenchymal Stem Cells/virology , Viral Proteins/blood , Animals , Green Fluorescent Proteins/metabolism , Humans , Rats , Serogroup , Stem Cell Factor/metabolism , Viral Tropism/genetics
8.
Front Nutr ; 8: 809732, 2021.
Article in English | MEDLINE | ID: mdl-35083264

ABSTRACT

Background: Among vascular pathologies associated with obesity, peripheral artery disease (PAD) occupies the important position. In clinical practice, nutritional interventions are recommended for patients with PAD. In this work, we investigated how the different dietary backgrounds affect the regeneration rate of ischemic hindlimb in mice. Methods: Male C57BL/6J mice were housed on three types of diet: low-fat (LFD), high-fat (HFD), and grain-based diet (GBD) for 13 weeks. Metabolic parameters including FBG level, ITT, and GTT were evaluated. The blood flow was assessed by laser Doppler scanning on 7, 14, and 21 days after hindlimb ischemia. Necrotic area of m.tibialis, macrophage infiltration, and angiogenesis/arteriogenesis were evaluated by histology. Glucose uptake in recovered skeletal muscle was analyzed using [3H]-2-deoxyglucose, and GLUT1 and GLUT4 expression were assessed by Western blotting. Results: In our work, we developed three experimental groups with different metabolic parameters: LFD with normal glucose metabolism, GBD with mild hyperglycemia, and HFD with impaired glucose tolerance. GBD-fed mice had a tendency to increase necrosis of m. tibialis and significantly higher macrophage infiltration than LFD and HFD groups. Moreover, GBD-fed mice had a trend to decreased blood flow recovery and significantly impaired arteriogenesis. Recovered skeletal muscle of GBD-fed mice had lower glucose uptake and decreased level of GLUT4 expression. Conclusion: Thus, we conclude that dietary background and metabolic status determine the rate of post-ischemic regeneration including angiogenesis, skeletal muscle recovery and metabolic activity. The most effective regeneration is supported by LFD, while the lowest rate of regeneration occurs on GBD.

9.
Int J Mol Sci ; 21(24)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339427

ABSTRACT

Cell therapy of the post-infarcted myocardium is still far from clinical use. Poor survival of transplanted cells, insufficient regeneration, and replacement of the damaged tissue limit the potential of currently available cell-based techniques. In this study, we generated a multilayered construct from adipose-derived mesenchymal stromal cells (MSCs) modified to secrete stem cell factor, SCF. In a rat model of myocardium infarction, we show that transplantation of SCF producing cell sheet induced activation of the epicardium and promoted the accumulation of c-kit positive cells in ischemic muscle. Morphometry showed the reduction of infarct size (16%) and a left ventricle expansion index (0.12) in the treatment group compared to controls (24-28%; 0.17-0.32). The ratio of viable myocardium was more than 1.5-fold higher, reaching 49% compared to the control (28%) or unmodified cell sheet group (30%). Finally, by day 30 after myocardium infarction, SCF-producing cell sheet transplantation increased left ventricle ejection fraction from 37% in the control sham-operated group to 53%. Our results suggest that, combining the genetic modification of MSCs and their assembly into a multilayered construct, we can provide prolonged pleiotropic effects to the damaged heart, induce endogenous regenerative processes, and improve cardiac function.


Subject(s)
Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Myocardial Infarction/therapy , Pericardium/metabolism , Stem Cell Factor/metabolism , Adipose Tissue/cytology , Animals , Cells, Cultured , HEK293 Cells , Humans , Male , Pericardium/physiology , Rats , Rats, Wistar , Regeneration , Stem Cell Factor/genetics
10.
Diabetes Res Clin Pract ; 169: 108410, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32882342

ABSTRACT

OBJECTIVE: Adipose derived stem cells (ADSC) are defective in metabolic disorders in various functionalities and properties including differentiation, multipotent state, metabolism and immunomodulation. However, the role of ADSC beiging potential in promoting of type 2 diabetes mellitus (T2DM) development remains unclear. Here we uncover association between potential of subcutaneous ADSC to beige differentiation and T2DM in patients with obesity. METHODS: ADSC were isolated from subcutaneous adipose tissue of patients with long morbid obesity (BMI > 35 kg/m2) and normal glucose tolerance (NGT) or T2DM. ADSC were differentiated into white or beige adipocytes and levels of thermogenic markers, lipid metabolism and electron transport chain (ETC) genes was analyzed by Western blotting and RT-PCR. ROS production was estimated by fluorescent microscopy. RESULTS: We have shown decreased UCP-1 expression in beige adipocytes from T2DM patients. Nevertheless, signal and expression activities of lipolysis were equal in NGT and T2DM beige adipocytes. Expression analysis of ETC genes also has not shown any statistically significant differences. Interestingly, we revealed increased mitochondrial ROS production in T2DM beige adipocytes during beige differentiation. CONCLUSIONS: In summary, compromised UCP1 expression in beige adipocytes of T2DM patients may cause increase of mitochondrial ROS. Elevated oxidative level is liable to act as damaging mechanism leading to insulin resistance or, alternatively, serve as compensatory mechanism for thermogenesis activation.


Subject(s)
Adipocytes, Beige/metabolism , Diabetes Mellitus, Type 2/blood , Mitochondria/metabolism , Obesity/metabolism , Reactive Oxygen Species/metabolism , Stem Cells/metabolism , Subcutaneous Fat/metabolism , Uncoupling Protein 1/metabolism , Adult , Cell Differentiation , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Male , Middle Aged
11.
J Vasc Res ; 43(5): 437-46, 2006.
Article in English | MEDLINE | ID: mdl-16899994

ABSTRACT

Myofibroblasts are involved in vessel remodeling during the development of hypertension as well as after angioplasty and aortocoronary grafting, but the mechanisms of myofibroblastic phenotypic modulation are not fully elucidated. We assessed the role of urokinase plasminogen activator (uPA) and its proteolytic activity in myofibroblast differentiation and the early proliferation following mechanical injury of the rat carotid adventitia. The effects of perivascular application of recombinant uPA (r-uPA), proteolytically inactive r-uPA(H/Q) and uPA neutralizing antibody were evaluated 4 days after surgical injury to the adventitia. The phenotype of adventitial cells was assessed using anti-alpha-smooth muscle actin (alpha-SM actin) antibody, anti-SM heavy chain myosin, anti-high-molecular-weight caldesmon, anti-smoothelin and anti-ED-1 antibodies, proliferation by the expression of proliferating cell nuclear antigen, and the size of the adventitia by quantitative morphometry. Four days after injury, the intensive immunostaining for urokinase appeared in the rat carotid artery adventitia. At the same time, the frequency of alpha-SM actin-positive adventitial cells was 1.8+/-1.1% in uninjured arteries and 25.2+/-5.4% in injured arteries (p<0.05), and the respective frequency of ED-1-positive cells 1.5+/-1.1 and 25.0+/-5.2%. The application of exogenous r-uPA doubled the numbers of alpha-SM actin-positive adventitial cells to 55.7+/-6.8% (p<0.05). ED-1-positive cells and proliferating cell nuclear antigen-positive cells as well as the size of the adventitia were also significantly increased after r-uPA compared with injury alone. In contrast, the proteolytically inactive r-uPA(H/Q) did not affect any parameters. The application of uPA neutralizing antibody attenuated the frequency of alpha-SM actin-positive cells to 12.6+/-3.5% (p<0.05), the frequency of ED-1-positive cells, and the numbers of adventitial cells. r-uPA stimulation of cultured human skin fibroblasts significantly increased the alpha-SM actin content in a concentration-dependent manner. In contrast, r-uPAH/Q did not induce changes in alpha-SM actin content. We conclude that uPA, which is upregulated in the injured adventitia, can augment adventitial cell accumulation, including myofibroblasts, and adventitia growth early after injury of the rat carotid artery adventitia by mechanisms involving proteolysis.


Subject(s)
Carotid Artery Injuries/pathology , Carotid Artery, Common/pathology , Cell Division/physiology , Muscle, Smooth, Vascular/injuries , Muscle, Smooth, Vascular/pathology , Urokinase-Type Plasminogen Activator/metabolism , Animals , Cell Count , Connective Tissue/enzymology , Connective Tissue/injuries , Connective Tissue/pathology , Fibroblasts/cytology , Humans , Male , Rats , Rats, Inbred WKY , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...