Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Respir Cell Mol Biol ; 63(6): 794-805, 2020 12.
Article in English | MEDLINE | ID: mdl-32853043

ABSTRACT

Electronic-cigarette (e-cig) vaping is a serious concern, as many pregnant women who vape consider it safe. However, little is known about the harmful effects of prenatal e-cig exposure on adult offspring, especially on extracellular-matrix (ECM) deposition and myogenesis in the lungs of offspring. We evaluated the biochemical and molecular implications of maternal exposure during pregnancy to e-cig aerosols on the adult offspring of both sexes, with a particular focus on pulmonary ECM remodeling and myogenesis. Pregnant CD-1 mice were exposed to e-cig aerosols with or without nicotine, throughout gestation, and lungs were collected from adult male and female offspring. Compared with the air-exposed control group, female mice exposed to e-cig aerosols, with or without nicotine, demonstrated increased lung protein abundance of LEF-1 (lymphoid enhancer-binding factor 1), fibronectin, and E-cadherin, whereas altered E-cadherin and PPARγ (peroxisome proliferator-activated receptor γ) levels were observed only in males exposed to e-cig aerosols with nicotine. Moreover, lipogenic and myogenic mRNAs were dysregulated in adult offspring in a sex-dependent manner. PAI-1 (plasminogen activator inhibitor-1), one of the ECM regulators, was significantly increased in females exposed prenatally to e-cig aerosols with nicotine and in males exposed to e-cig aerosols compared with control animals exposed to air. MMP9 (matrix metalloproteinase 9), a downstream target of PAI-1, was downregulated in both sexes exposed to e-cig aerosols with nicotine. No differences in lung histology were observed among any of the treatment groups. Overall, adult mice exposed prenatally to e-cig aerosols could be predisposed to developing pulmonary disease later in life. Thus, these findings suggest that vaping during pregnancy is unsafe and increases the propensity for later-life interstitial lung diseases.


Subject(s)
Aerosols/pharmacology , Electronic Nicotine Delivery Systems , Prenatal Exposure Delayed Effects/pathology , Sex Factors , Animals , Female , Lung/drug effects , Lung/pathology , Lung Diseases/chemically induced , Lung Diseases/pathology , Mice , Nicotine/pharmacology , Pregnancy
2.
Environ Health Perspect ; 128(4): 47006, 2020 04.
Article in English | MEDLINE | ID: mdl-32293200

ABSTRACT

BACKGROUND: In an effort to decrease the rates of smoking conventional tobacco cigarettes, electronic cigarettes (e-cigarettes) have been proposed as an effective smoking cessation tool. However, little is known about their toxicological impacts. This is concerning given that e-cigarette use is perceived as less harmful than conventional tobacco cigarettes during pregnancy for both the mother and fetus. OBJECTIVE: The goal of this study was to test the neurodevelopmental consequences of maternal e-cigarette use on adult offspring behavior and neuroimmune outcomes. METHODS: Pregnant female CD-1 mice were randomly assigned to one of three treatment groups (n=8-10 per group) and exposed daily to either filtered air, propylene glycol and vegetable glycerol (50:50 PG/VG vehicle), or to PG/VG with 16mg/mL nicotine (+Nic). Whole-body exposures were carried out for 3 h/d, 7 d/week, from gestational day (GD)0.5 until GD17.5. Adult male and female offspring (8 weeks old) were assessed across a battery of behavioral assessments followed by region-specific quantification of brain cytokines using multiplex immunoassays. RESULTS: Adult offspring of both sexes exposed to +Nic exhibited elevated locomotor activity in the elevated plus maze and altered stress-coping strategies in the forced swim task. Moreover, male and female offspring exposed to PG/VG with and without nicotine had a 5.2% lower object discrimination score in the novel object recognition task. In addition to differences in offspring behavior, maternal e-cigarette exposure with nicotine led to a reduction in interleukin (IL)-4 and interferon-gamma (IFNγ) in the diencephalon, as well as lower levels of hippocampal IFNγ (females only). E-cigarette exposure without nicotine resulted in a 2-fold increase of IL-6 in the cerebellum. DISCUSSION: These findings support previous adverse findings of e-cigarette exposure on neurodevelopment in a mouse model and provide substantial evidence of persistent adverse behavioral and neuroimmunological consequences to adult offspring following maternal e-cigarette exposure during pregnancy. https://doi.org/10.1289/EHP6067.


Subject(s)
Electronic Nicotine Delivery Systems , Inflammation/immunology , Locomotion/drug effects , Prenatal Exposure Delayed Effects/immunology , Prenatal Exposure Delayed Effects/psychology , Stress, Psychological/psychology , Aerosols/analysis , Animals , Disease Models, Animal , Female , Glycerol/adverse effects , Inflammation/chemically induced , Mice , Nicotine/adverse effects , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Propylene Glycol/adverse effects , Random Allocation , Stress, Psychological/chemically induced
3.
Gen Comp Endocrinol ; 267: 98-108, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29913171

ABSTRACT

The circulating pattern of immunoreactive relaxin and progestagens based on monthly and gestational stage (early, mid, late) profiles were determined during pregnancies that resulted in live calves (LIVE, n = 30), stillbirths (STILLB, n = 3), abortions (ABORT, n = 5) and presumptive false pregnancies (FALSE, n = 8), and during the follicular (n = 34) and luteal phase (n = 58). Monthly LIVE relaxin concentrations steadily increased during gestation, but values did not significantly exceed those of the luteal phase until 9 months prior to parturition, peaking during the final month at 2356 ng/ml. Relaxin surged (P < 0.05) during the final week of gestation (36,397 ng/ml), undergoing a 3 and 9-fold increase compared with concentrations in the preceding two weeks, respectively. Monthly relaxin production did not differ among each reproductive state with the exception of months-13-16 where concentrations were higher (P < 0.001) for STILLB than LIVE. Relaxin concentration was reduced (P < 0.0001) by 849% in placental versus maternal serum collected within 1 day of labor. Mid- and late-pregnancy progestagen concentrations were lower for FALSE (P < 0.001) compared with STILLB and LIVE. Late pregnancy progestagen concentrations were reduced for FALSE (P < 0.05) and ABORT (P < 0.02) compared with LIVE and STILLB. Monthly progestagen production in ABORT tended to be lower than LIVE across a range of gestational months (Months 2, 7, 8, 11) but this difference only became significant during months 14 and 15. Results indicate that relaxin is primarily produced by the CL during pregnancy, and that concentrations could not be used to differentiate from non-pregnant females until the final 6 months of gestation. In addition, as would be expected from a primarily CL product, relaxin cannot be used to detect abnormal pregnancies. Conversely, progestagens, which are produced by both the placenta and CL can be used to differentiate FALSE from normal pregnancy and may be useful indicators of fetal health in the killer whale.


Subject(s)
Embryo Loss/blood , Pregnancy, Animal/blood , Progestins/blood , Relaxin/blood , Whale, Killer/blood , Animals , Female , Parturition/blood , Placental Circulation , Pregnancy , Progesterone/blood , Reproducibility of Results , Reproduction
4.
J Zoo Biol ; 2(1): 21-29, 2018.
Article in English | MEDLINE | ID: mdl-31799514

ABSTRACT

In the seminal plasma of terrestrial mammalian species known as induced (e.g., camels) and spontaneous (e.g., cattle) ovulators, an ovulation-inducing factor (OIF) with a protein structure similar to beta-nerve growth factor (ß-NGF) has been identified. Detection of an OIF/NGF in the seminal plasma of cetaceans would have both basic and applied implications in reproductive biology and conservation management programs. A preliminary evaluation was conducted to characterize the distribution and abundance of seminal plasma proteins in aquarium-based belugas and a Pacific white-sided and bottlenose dolphin. Initially, SDS-PAGE was used with 50 µg of total protein for separation; thereafter, Western immunoblot was used with anti-NGF. In addition to odontocete seminal plasma, a purified fraction of llama seminal plasma (100 ng protein) and an extract of mouse brain (20 µg total protein) were included as positive controls for NGF. Within the two belugas, visual inspection of the protein bands indicated similar distribution and intensity. However, among the belugas and Pacific white-sided and bottlenose dolphins there was more diversity than similarity in the distribution and abundance of seminal plasma proteins. While immunoreactivity of NGF was distinctly evident in the llama and mouse positive controls, there was no visual reactivity in any of the odontocete samples. These preliminary results provide novel information indicating more homogeneity within and heterogeneity among seminal plasma proteins of ondentocetes. Although NGF was not immunologically detected, future studies are required to address the apparent limitations of immuno-detection of NGF, especially if the post-translational form of ß-NGF is in low abundance in the seminal plasma of belugas and Pacific white-sided and bottlenose dolphins.

SELECTION OF CITATIONS
SEARCH DETAIL
...