Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol ; 32(8): 1990-2003, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27640876

ABSTRACT

Ginsenoside Rb1, the major saponin component of ginseng root, has a wide range of therapeutic application. Previous studies have established that ginsenoside Rb1 inhibits the cell cycle and induces apoptosis. However, its side-effects, particularly those on embryonic development, have not been well characterized to date. In the current study, we examined whether ginsenoside Rb1 exerts a cytotoxic effect on mouse embryos at the blastocyst stage, and affects subsequent embryonic development in vitro and in vivo. Blastocysts treated with 25-100 µg mL-1 ginsenoside Rb1 exhibited significantly increased apoptosis and a corresponding decrease in total cell number. Notably, the implantation success rate of blastocysts pretreated with ginsenoside Rb1 was lower than that of their control counterparts. Moreover, in vitro treatment with 25-100 µg mL-1 ginsenoside Rb1 was associated with increased resorption of post-implantation embryos and decreased fetal weight. In an in vivo model, intravenous injection with ginsenoside Rb1 (1, 3, 5 mg kg-1 body weight/day) for 4 days resulted in apoptosis of blastocyst stage embryos and early embryonic developmental injury. In addition, ginsenoside Rb1 appeared to induce injury in mouse blastocysts through oxidative stresses-triggered intrinsic apoptotic signaling processes to impair sequent embryonic development. The collective results strongly indicate that ginsenoside Rb1 induces apoptosis and retards early pre- and post-implantation development of mouse embryos, both in vitro and in vivo. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1990-2003, 2017.


Subject(s)
Apoptosis/drug effects , Embryonic Development/drug effects , Ginsenosides/toxicity , Oxidative Stress/drug effects , Animals , Blastocyst/drug effects , Embryo Implantation/drug effects , Female , Male , Mice, Inbred ICR , Pregnancy , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...